Surface thermodynamics forms the foundation of any meaningful study of capillarity and wetting phenomena. The second edition of Applied Surface Thermodynamics offers a comprehensive state-of-the-art treatment of this critical topic. It provides students and researchers with fundamental knowledge and practical guidelines in solving real-world proble
Offers a treatment of applied surface dynamics in relation to contact angles and surface tensions, providing a foundation for the subject and detailed presentations of recent techniques. The work supplies a theoretical framework for the study and measurement of surface tensions and contact angles, and acts as a day-to-day guide for laboratory pract
Surface thermodynamics forms the foundation of any meaningful study of capillarity and wetting phenomena. The second edition of Applied Surface Thermodynamics offers a comprehensive state-of-the-art treatment of this critical topic. It provides students and researchers with fundamental knowledge and practical guidelines in solving real-world problems related to the measurement and interpretation of interfacial properties. Containing 40 percent new material and reorganized content, this second edition begins by presenting a generalized Gibbs theory of capillarity, including discussions of highly curved interfaces. Concentrating on drop-shape techniques, the book discusses liquid-fluid interfacial tension and its measurement. Next, the authors focus on contact angles with chapters on experimental procedures, thermodynamic models, and the interpretation of contact angles in terms of solid surface tension. The book discusses theoretical approaches to determining solid surface tension as well as interfacial tensions of particles and their manifestations. It concludes by discussing drop size dependence of contact angles and line tension. What's New in the Second Edition: Recent progress in Axisymmetric Drop Shape Analysis (ADSA) Image processing methods for drop shape analysis Advanced applications and generalizations of ADSA Recent studies of contact angle hysteresis Contact angles on inert fluoropolymers Update on line tension and the drop size dependence of contact angles Exploring a range of different aspects of surface science and its applications, the book logically progresses so that knowledge of previous chapters enhances the understanding of subsequent material, yet each chapter is freestanding so that experienced researchers can quickly refer to topics of particular interest.
Surface thermodynamics forms the foundation of any meaningful study of capillarity and wetting phenomena. The second edition of Applied Surface Thermodynamics offers a comprehensive state-of-the-art treatment of this critical topic. It provides students and researchers with fundamental knowledge and practical guidelines in solving real-world problems related to the measurement and interpretation of interfacial properties. Containing 40 percent new material and reorganized content, this second edition begins by presenting a generalized Gibbs theory of capillarity, including discussions of highly curved interfaces. Concentrating on drop-shape techniques, the book discusses liquid-fluid interfacial tension and its measurement. Next, the authors focus on contact angles with chapters on experimental procedures, thermodynamic models, and the interpretation of contact angles in terms of solid surface tension. The book discusses theoretical approaches to determining solid surface tension as well as interfacial tensions of particles and their manifestations. It concludes by discussing drop size dependence of contact angles and line tension. What’s New in the Second Edition: Recent progress in Axisymmetric Drop Shape Analysis (ADSA) Image processing methods for drop shape analysis Advanced applications and generalizations of ADSA Recent studies of contact angle hysteresis Contact angles on inert fluoropolymers Update on line tension and the drop size dependence of contact angles Exploring a range of different aspects of surface science and its applications, the book logically progresses so that knowledge of previous chapters enhances the understanding of subsequent material, yet each chapter is freestanding so that experienced researchers can quickly refer to topics of particular interest.
Published under the asspices of both IUPAC and its affiliated body, the International Association of Chemical Thermodynamics (IACT), this book will serve as a guide to scientists or technicians who use equations of state for fluids. Concentrating on the application of theory, the practical use of each type of equation is discussed and the strengths and weaknesses of each are addressed. It includes material on the equations of state for chemically reacting and non-equilibrium fluids which have undergone significant developments and brings up to date the equations of state for fluids and fluid mixtures. Applied Thermodynamics of Fluids addresses the need of practitioners within academia, government and industry by assembling an international team of distinguished experts to provide each chapter. The topics presented in the book are important to the energy business, particularly the hydroncarbon economy and the development of new power sources and are also significant for the application of liquid crystals and ionic liquids to commericial products. This reference will be useful for post graduate researchers in the fields of chemical engineering, mechanical engineering, chemistry and physics.
Surface Complexation Modelling deals with various aspects associate to the modelling of solutes adsorption from of solutes from aqueous solutions to minerals. The individual contributions cover fundamental aspects and applications. Applications cover case studies and present consistent surface complexation parameter sets. The model approaches range from simplistic to mechanistic. More fundamental contributions address underlying phenomena or stress the opportunities of modern computational methods. Several mineral systems are covered, including goethite, gibbsite, clay minerals etc.Surface Complexation Modelling presents the state-of-the-art of surface complexation modelling and suggests ideas for further model development. A number of chapters are authored by scientists working on nuclear waste storage, where the retention of radionuclides contributes to preventing radionuclide migration from the repository to the biosphere. Other contributions come from soil and environmental chemists with an interest in reactive transport of pollutants in soils or aquifers. - Covering a wide range of disciplines - Bringing together contributions from experts in the field - Providing a balance between the theoretical and applied aspects
Surface tension provides a thermodynamic avenue for analyzing systems in equilibrium and formulating phenomenological explanations for the behavior of constituent molecules in the surface region. While there are extensive experimental observations and established ideas regarding desorption of ions from the surfaces of aqueous salt solutions, a more