Applied Partial Differential Equations

Applied Partial Differential Equations

Author: J. David Logan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 193

ISBN-13: 1468405330

DOWNLOAD EBOOK

This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems;' The audience usually consists of stu dents in mathematics, engineering, and the physical sciences. The topics include derivations of some of the standard equations of mathemati cal physics (including the heat equation, theĀ· wave equation, and the Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions or separation of variables, and methods based on Fourier and Laplace transforms. Prerequisites include calculus and a post-calculus differential equations course. There are several excellent texts for this course, so one can legitimately ask why one would wish to write another. A survey of the content of the existing titles shows that their scope is broad and the analysis detailed; and they often exceed five hundred pages in length. These books gen erally have enough material for two, three, or even four semesters. Yet, many undergraduate courses are one-semester courses. The author has often felt that students become a little uncomfortable when an instructor jumps around in a long volume searching for the right topics, or only par tially covers some topics; but they are secure in completely mastering a short, well-defined introduction. This text was written to proVide a brief, one-semester introduction to partial differential equations.


Applied Partial Differential Equations

Applied Partial Differential Equations

Author: Paul DuChateau

Publisher: Courier Corporation

Published: 2012-10-30

Total Pages: 638

ISBN-13: 048614187X

DOWNLOAD EBOOK

Superb introduction devotes almost half its pages to numerical methods for solving partial differential equations, while the heart of the book focuses on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included, with solutions for many at end of book. For students with little background in linear algebra, a useful appendix covers that subject briefly.


Applied Partial Differential Equations: An Introduction

Applied Partial Differential Equations: An Introduction

Author: Alan Jeffrey

Publisher: Academic Press

Published: 2003

Total Pages: 412

ISBN-13: 9780123822529

DOWNLOAD EBOOK

This book is written to meet the needs of undergraduates in applied mathematics, physics and engineering studying partial differential equations. It is a more modern, comprehensive treatment intended for students who need more than the purely numerical solutions provided by programs like the MATLAB PDE Toolbox, and those obtained by the method of separation of variables, which is usually the only theoretical approach found in the majority of elementary textbooks. This will fill a need in the market for a more modern text for future working engineers, and one that students can read and understand much more easily than those currently on the market. * Includes new and important materials necessary to meet current demands made by diverse applications * Very detailed solutions to odd numbered problems to help students * Instructor's Manual Available


An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations

Author: Michael Renardy

Publisher: Springer Science & Business Media

Published: 2006-04-18

Total Pages: 447

ISBN-13: 0387216871

DOWNLOAD EBOOK

Partial differential equations are fundamental to the modeling of natural phenomena. The desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians and has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. This book, meant for a beginning graduate audience, provides a thorough introduction to partial differential equations.


Introduction to Applied Partial Differential Equations

Introduction to Applied Partial Differential Equations

Author: John M. Davis

Publisher: W. H. Freeman

Published: 2012-01-06

Total Pages: 0

ISBN-13: 9781429275927

DOWNLOAD EBOOK

Drawing on his decade of experience teaching the differential equations course, John Davis offers a refreshing and effective new approach to partial differential equations that is equal parts computational proficiency, visualization, and physical interpretation of the problem at hand.


Partial Differential Equations

Partial Differential Equations

Author: Walter A. Strauss

Publisher: John Wiley & Sons

Published: 2007-12-21

Total Pages: 467

ISBN-13: 0470054565

DOWNLOAD EBOOK

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.


Partial Differential Equations

Partial Differential Equations

Author: Michael Shearer

Publisher: Princeton University Press

Published: 2015-03-01

Total Pages: 286

ISBN-13: 0691161291

DOWNLOAD EBOOK

An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors


Introduction to Partial Differential Equations

Introduction to Partial Differential Equations

Author: Aslak Tveito

Publisher: Springer Science & Business Media

Published: 2008-01-21

Total Pages: 402

ISBN-13: 0387227733

DOWNLOAD EBOOK

Combining both the classical theory and numerical techniques for partial differential equations, this thoroughly modern approach shows the significance of computations in PDEs and illustrates the strong interaction between mathematical theory and the development of numerical methods. Great care has been taken throughout the book to seek a sound balance between these techniques. The authors present the material at an easy pace and exercises ranging from the straightforward to the challenging have been included. In addition there are some "projects" suggested, either to refresh the students memory of results needed in this course, or to extend the theories developed in the text. Suitable for undergraduate and graduate students in mathematics and engineering.


Applied Partial Differential Equations:

Applied Partial Differential Equations:

Author: Peter Markowich

Publisher: Springer Science & Business Media

Published: 2007-08-06

Total Pages: 210

ISBN-13: 3540346465

DOWNLOAD EBOOK

This book presents topics of science and engineering which occur in nature or are part of daily life. It describes phenomena which are modelled by partial differential equations, relating to physical variables like mass, velocity and energy, etc. to their spatial and temporal variations. The author has chosen topics representing his career-long interests, including the flow of fluids and gases, granular flows, biological processes like pattern formation on animal skins, kinetics of rarified gases and semiconductor devices. Each topic is presented in its scientific or engineering context, followed by an introduction of applicable mathematical models in the form of partial differential equations.