Introduction to Laser Spectroscopy

Introduction to Laser Spectroscopy

Author: Halina Abramczyk

Publisher: Elsevier

Published: 2005-05-06

Total Pages: 331

ISBN-13: 0080455255

DOWNLOAD EBOOK

Introduction to Laser Spectroscopy is a well-written, easy-to-read guide to understanding the fundamentals of lasers, experimental methods of modern laser spectroscopy and applications. It provides a solid grounding in the fundamentals of many aspects of laser physics, nonlinear optics, and molecular spectroscopy. In addition, by comprehensively combining theory and experimental techniques it explicates a variety of issues that are essential to understanding broad areas of physical, chemical and biological science. Topics include key laser types - gas, solid state, and semiconductor - as well as the rapidly evolving field of ultrashort laser phenomena for femtochemistry applications. The examples used are well researched and clearly presented. Introduction to Laser Spectroscopy is strongly recommended to newcomers as well as researchers in physics, engineering, chemistry and biology.* A comprehensive course that combines theory and practice* Includes a systematic and comprehensive description for key laser types* Written for students and professionals looking to gain a thorough understanding of modern laser spectroscopy


Applied Laser Spectroscopy

Applied Laser Spectroscopy

Author: Wolfgang Demtröder

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 495

ISBN-13: 1468413422

DOWNLOAD EBOOK

This volume contains the lectures and seminars presented at the NATO Advanced Study Institute on "Applied Laser Spectroscopy" the fourteenth course of the Europhysics School of Quantum Electronics, held under the supervision of the Quantum Electronics Division of the European Physical Society. The Institute was held at Centro "I Cappuccini", San Miniato, Tuscany, Italy, September 3-15,1989. The Europhysics School of Quantum Electronics was started in 1970 with the aim of providing instruction for young researchers and advanced students already engaged in the area of quantum electronics or wishing to switch to this area from a different background. Presently the school is under the direction of Professors F.T. Arecchi and M Inguscio, University of Florence and Prof. H. Walther University of Munich and has the headquarters at the National Institute of Optics (INO), Firenze, Italy. Each time the directors choose a subject of particular interest, alternating fundamental topics with technological ones, and ask colleagues specifically competent in a given area to take the scientific responsibility for that course.


Applied Laser Spectroscopy for Nuclear Physics

Applied Laser Spectroscopy for Nuclear Physics

Author: Thomas Day Goodacre

Publisher: Springer Nature

Published: 2021-09-25

Total Pages: 138

ISBN-13: 3030738892

DOWNLOAD EBOOK

This thesis explores two distinct applications of laser spectroscopy: the study of nuclear ground state properties, and element selective radioactive ion beam production. It also presents the methods and results of an investigation into isotope shifts in the mercury isotopic chain. These Resonance Ionization Laser Ion Source (RILIS) developments are detailed, together with an RILIS ionization scheme that allowed laser ionized ion beams of chromium, germanium, radium and tellurium to be generated at the Isotope Mass Separator On-Line (ISOLDE) facility. A combination of laser spectroscopy with decay spectroscopy and mass spectrometry unambiguously demonstrated a cessation of the extreme shape staggering first observed in the 1970s and revealed the characteristic kink at the crossing of the N=126 shell closure. A series of RILIS developments were required to facilitate this experiment, including mercury “ionization scheme” development and the coupling of the RILIS with an arc discharge ion source. Laser spectroscopy has since become a powerful tool for nuclear physics and the Resonance Ionization Laser Ion Source (RILIS), of the ISOLDE facility at CERN, is a prime example. Highlighting important advances in this field, the thesis offers a unique and revealing resource.


Laser Chemistry

Laser Chemistry

Author: Helmut H. Telle

Publisher: John Wiley & Sons

Published: 2007-04-30

Total Pages: 516

ISBN-13: 9780470059401

DOWNLOAD EBOOK

Laser Chemistry: Spectroscopy, Dynamics and Applications provides a basic introduction to the subject, written for students and other novices. It assumes little in the way of prior knowledge, and carefully guides the reader through the important theory and concepts whilst introducing key techniques and applications.


Ultrasensitive Laser Spectroscopy

Ultrasensitive Laser Spectroscopy

Author: David S. Kliger

Publisher:

Published: 1983

Total Pages: 466

ISBN-13:

DOWNLOAD EBOOK

Ultrasensitive Laser Spectroscopy covers the experimental methods involved in various sensitive techniques to which lasers have been applied for the study of weak transitions. This book is organized into seven chapters. Each chapter discusses the theories, experiments, and application of the specific technique. A discussion on the advantages, disadvantages, and modifications made in each technique is also provided. Ultrasensitive techniques considered in this text include photoacoustic, one- and two-photon excitation, absorption, mass, and laser ionization spectroscopies. Other chapters exami ...


Foundations of Laser Spectroscopy

Foundations of Laser Spectroscopy

Author: Stig Stenholm

Publisher: Courier Corporation

Published: 2012-09-20

Total Pages: 292

ISBN-13: 0486150372

DOWNLOAD EBOOK

A simple presentation of the theoretical foundations of steady-state laser spectroscopy, this text helps students to apply theory to calculations with a systematic series of examples and exercises. 1984 edition.


Laser Spectroscopy for Sensing

Laser Spectroscopy for Sensing

Author: Matthieu Baudelet

Publisher: Woodhead Publishing

Published: 2019-09-15

Total Pages: 700

ISBN-13: 9780081024843

DOWNLOAD EBOOK

Laser spectroscopy is a valuable tool for sensing and chemical analysis. Developments in lasers, detectors and mathematical analytical tools have led to improvements in the sensitivity and selectivity of spectroscopic techniques and extended their fields of application. Laser Spectroscopy for Sensing, Second Edition examines these advances and how laser spectroscopy can be used in a diverse range of industrial, medical, and environmental applications. The book provides an overview of laser spectroscopy at three levels: the fundamental aspects to consider when planning use of laser spectroscopy to solve a problem (from the sample properties to the laser properties to the data analysis), the technical aspects of several spectroscopic techniques, and the fields of applications of such techniques. In the new edition, key advancements from the field are captured as well as two new chapters on Raman Spectroscopy and Laser-induced breakdown spectroscopy. Laser Spectroscopy for Sensing provides readers with a broad overview of the techniques and applications of laser spectroscopy for sensing. Presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation Explores laser spectroscopy techniques, including Raman spectroscopy and laser-induced breakdown spectroscopy Considers spectroscopic analysis of industrial materials and their applications in nuclear research and industry


Principles of Laser Spectroscopy and Quantum Optics

Principles of Laser Spectroscopy and Quantum Optics

Author: Paul R. Berman

Publisher: Princeton University Press

Published: 2010-12-13

Total Pages: 538

ISBN-13: 1400837049

DOWNLOAD EBOOK

Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorption and saturation spectroscopy. Other topics include hole burning, dark states, slow light, and coherent transient spectroscopy, as well as atom optics and atom interferometry. In the second half of the text, the authors consider applications in which the radiation field is quantized. Topics include spontaneous decay, optical pumping, sub-Doppler laser cooling, the Heisenberg equations of motion for atomic and field operators, and light scattering by atoms in both weak and strong external fields. The concluding chapter offers methods for creating entangled and spin-squeezed states of matter. Instructors can create a one-semester course based on this book by combining the introductory chapters with a selection of the more advanced material. A solutions manual is available to teachers. Rigorous introduction to the interaction of optical fields with atoms Applications include linear and nonlinear spectroscopy, dark states, and slow light Extensive chapter on atom optics and atom interferometry Conclusion explores entangled and spin-squeezed states of matter Solutions manual (available only to teachers)


Laser-Induced Breakdown Spectroscopy

Laser-Induced Breakdown Spectroscopy

Author: Jagdish P. Singh

Publisher: Elsevier

Published: 2020-06-02

Total Pages: 624

ISBN-13: 0128188308

DOWNLOAD EBOOK

Laser-Induced Breakdown Spectroscopy, Second Edition, covers the basic principles and latest developments in instrumentation and applications of Laser Induced Breakdown Spectroscopy (LIBS). Written by active experts in the field, it serves as a useful resource for analytical chemists and spectroscopists, as well as graduate students and researchers engaged in the fields of combustion, environmental science, and planetary and space exploration. This fully revised second edition includes several new chapters on new LIBS techniques as well as several new applications, including flame and off-gas measurement, pharmaceutical samples, defense applications, carbon sequestration and site monitoring, handheld instruments, and more. LIBS has rapidly developed into a major analytical technology with the capability of detecting all chemical elements in a sample, of real- time response, and of close-contact or stand-off analysis of targets. It does not require any sample preparation, unlike conventional spectroscopic analytical techniques. Samples in the form of solids, liquids, gels, gases, plasmas, and biological materials (like teeth, leaves, or blood) can be studied with almost equal ease. This comprehensive reference introduces the topic to readers in a simple, direct, and accessible manner for easy comprehension and maximum utility. - Covers even more applications of LIBS beyond the first edition, including combustion, soil physics, environment, and life sciences - Includes new chapters on LIBS techniques that have emerged in the last several years, including Femtosecond LIBS and Molecular LIBS - Provides inspiration for future developments in this rapidly growing field in the concluding chapter