Applied Data-Centric Social Sciences

Applied Data-Centric Social Sciences

Author: Aki-Hiro Sato

Publisher: Springer

Published: 2014-07-29

Total Pages: 293

ISBN-13: 4431549749

DOWNLOAD EBOOK

Applied data-centric social sciences aim to develop both methodology and practical applications of various fields of social sciences and businesses with rich data. Specifically, in the social sciences, a vast amount of data on human activities may be useful for understanding collective human nature. In this book, the author introduces several mathematical techniques for handling a huge volume of data and analysing collective human behaviour. The book is constructed from data-oriented investigation, with mathematical methods and expressions used for dealing with data for several specific problems. The fundamental philosophy underlying the book is that both mathematical and physical concepts are determined by the purposes of data analysis. This philosophy is shown throughout exemplar studies of several fields in socio-economic systems. From a data-centric point of view, the author proposes a concept that may change people’s minds and cause them to start thinking from the basis of data. Several goals underlie the chapters of the book. The first is to describe mathematical and statistical methods for data analysis, and toward that end the author delineates methods with actual data in each chapter. The second is to find a cyber-physical link between data and data-generating mechanisms, as data are always provided by some kind of data-generating process in the real world. The third goal is to provide an impetus for the concepts and methodology set forth in this book to be applied to socio-economic systems.


Applications of Data-Centric Science to Social Design

Applications of Data-Centric Science to Social Design

Author: Aki-Hiro Sato

Publisher: Springer

Published: 2019-07-04

Total Pages: 264

ISBN-13: 9811071942

DOWNLOAD EBOOK

The intention behind this book is to illustrate the deep relation among human behavior, data-centric science, and social design. In fact, these three issues have been independently developing in different fields, although they are, of course, deeply interrelated to one another. Specifically, fundamental understanding of human behavior should be employed for investigating our human society and designing social systems. Insights and both quantitative and qualitative understandings of collective human behavior are quite useful when social systems are designed. Fundamental principles of human behavior, theoretical models of human behavior, and information cascades are addressed as aspects of human behavior. Data-driven investigation of human nature, social behavior, and societal systems are developed as aspects of data-centric science. As design aspects, how to design social systems from heterogeneous memberships is explained. There is also discussion of these three aspects—human behavior, data-centric science, and social design—independently and with regard to the relationships among them.


Data-Centric Biology

Data-Centric Biology

Author: Sabina Leonelli

Publisher: University of Chicago Press

Published: 2016-11-18

Total Pages: 282

ISBN-13: 022641650X

DOWNLOAD EBOOK

In recent decades, there has been a major shift in the way researchers process and understand scientific data. Digital access to data has revolutionized ways of doing science in the biological and biomedical fields, leading to a data-intensive approach to research that uses innovative methods to produce, store, distribute, and interpret huge amounts of data. In Data-Centric Biology, Sabina Leonelli probes the implications of these advancements and confronts the questions they pose. Are we witnessing the rise of an entirely new scientific epistemology? If so, how does that alter the way we study and understand life—including ourselves? Leonelli is the first scholar to use a study of contemporary data-intensive science to provide a philosophical analysis of the epistemology of data. In analyzing the rise, internal dynamics, and potential impact of data-centric biology, she draws on scholarship across diverse fields of science and the humanities—as well as her own original empirical material—to pinpoint the conditions under which digitally available data can further our understanding of life. Bridging the divide between historians, sociologists, and philosophers of science, Data-Centric Biology offers a nuanced account of an issue that is of fundamental importance to our understanding of contemporary scientific practices.


Economic Foundations for Social Complexity Science

Economic Foundations for Social Complexity Science

Author: Yuji Aruka

Publisher: Springer

Published: 2017-09-25

Total Pages: 278

ISBN-13: 9811057052

DOWNLOAD EBOOK

This book focuses on how important massive information is and how sensitive outcomes are to information. In this century humans now are coming up against the massive utilization of information in various contexts. The advent of super intelligence is drastically accelerating the evolution of the socio-economic system. Our traditional analytic approach must therefore be radically reformed in order to adapt to an information-sensitive framework, which means giving up myopic purification and the elimination of all considerations of massive information. In this book, authors who have shared and exchanged their ideas over the last 20 years, offer thorough examinations of the theoretical–ontological basis of complex economic interaction, econophysics, and agent-based modeling during the last several decades. This book thus provides the indispensable philosophical-scientific foundations for this new approach, and then moves on to empirical–epistemological studies concerning changes in sentiments and other movements in financial markets.


Data Journeys in the Sciences

Data Journeys in the Sciences

Author: Sabina Leonelli

Publisher: Springer Nature

Published: 2020-06-29

Total Pages: 411

ISBN-13: 3030371778

DOWNLOAD EBOOK

This groundbreaking, open access volume analyses and compares data practices across several fields through the analysis of specific cases of data journeys. It brings together leading scholars in the philosophy, history and social studies of science to achieve two goals: tracking the travel of data across different spaces, times and domains of research practice; and documenting how such journeys affect the use of data as evidence and the knowledge being produced. The volume captures the opportunities, challenges and concerns involved in making data move from the sites in which they are originally produced to sites where they can be integrated with other data, analysed and re-used for a variety of purposes. The in-depth study of data journeys provides the necessary ground to examine disciplinary, geographical and historical differences and similarities in data management, processing and interpretation, thus identifying the key conditions of possibility for the widespread data sharing associated with Big and Open Data. The chapters are ordered in sections that broadly correspond to different stages of the journeys of data, from their generation to the legitimisation of their use for specific purposes. Additionally, the preface to the volume provides a variety of alternative “roadmaps” aimed to serve the different interests and entry points of readers; and the introduction provides a substantive overview of what data journeys can teach about the methods and epistemology of research.


Applied Data Analysis and Modeling for Energy Engineers and Scientists

Applied Data Analysis and Modeling for Energy Engineers and Scientists

Author: T. Agami Reddy

Publisher: Springer Nature

Published: 2023-10-18

Total Pages: 622

ISBN-13: 3031348699

DOWNLOAD EBOOK

Now in a thoroughly revised and expanded second edition, this classroom-tested text demonstrates and illustrates how to apply concepts and methods learned in disparate courses such as mathematical modeling, probability, statistics, experimental design, regression, optimization, parameter estimation, inverse modeling, risk analysis, decision-making, and sustainability assessment methods to energy processes and systems. It provides a formal structure that offers a broad and integrative perspective to enhance knowledge, skills, and confidence to work in applied data analysis and modeling problems. This new edition also reflects recent trends and advances in statistical modeling as applied to energy and building processes and systems. It includes numerous examples from recently published technical papers to nurture and stimulate a more research-focused mindset. How the traditional stochastic data modeling approaches are complemented by data analytic algorithmic models such as machine learning and data mining are also discussed. The important societal issues related to the sustainability of energy systems are presented, and a formal structure is proposed meant to classify the various assessment methods found in the literature. Applied Data Analysis and Modeling for Energy Engineers and Scientists is designed for senior-level undergraduate and graduate instruction in energy engineering and mathematical modeling, for continuing education professional courses, and as a self-study reference book for working professionals. In order for readers to have exposure and proficiency with performing hands-on analysis, the open-source Python and R programming languages have been adopted in the form of Jupyter notebooks and R markdown files, and numerous data sets and sample computer code reflective of real-world problems are available online.


Data Science Landscape

Data Science Landscape

Author: Usha Mujoo Munshi

Publisher: Springer

Published: 2018-03-01

Total Pages: 343

ISBN-13: 9811075158

DOWNLOAD EBOOK

The edited volume deals with different contours of data science with special reference to data management for the research innovation landscape. The data is becoming pervasive in all spheres of human, economic and development activity. In this context, it is important to take stock of what is being done in the data management area and begin to prioritize, consider and formulate adoption of a formal data management system including citation protocols for use by research communities in different disciplines and also address various technical research issues. The volume, thus, focuses on some of these issues drawing typical examples from various domains. The idea of this work germinated from the two day workshop on “Big and Open Data – Evolving Data Science Standards and Citation Attribution Practices”, an international workshop, led by the ICSU-CODATA and attended by over 300 domain experts. The Workshop focused on two priority areas (i) Big and Open Data: Prioritizing, Addressing and Establishing Standards and Good Practices and (ii) Big and Open Data: Data Attribution and Citation Practices. This important international event was part of a worldwide initiative led by ICSU, and the CODATA-Data Citation Task Group. In all, there are 21 chapters (with 21st Chapter addressing four different core aspects) written by eminent researchers in the field which deal with key issues of S&T, institutional, financial, sustainability, legal, IPR, data protocols, community norms and others, that need attention related to data management practices and protocols, coordinate area activities, and promote common practices and standards of the research community globally. In addition to the aspects touched above, the national / international perspectives of data and its various contours have also been portrayed through case studies in this volume.


Introduction to Data Systems

Introduction to Data Systems

Author: Thomas Bressoud

Publisher: Springer Nature

Published: 2020-12-04

Total Pages: 844

ISBN-13: 3030543714

DOWNLOAD EBOOK

Encompassing a broad range of forms and sources of data, this textbook introduces data systems through a progressive presentation. Introduction to Data Systems covers data acquisition starting with local files, then progresses to data acquired from relational databases, from REST APIs and through web scraping. It teaches data forms/formats from tidy data to relationally defined sets of tables to hierarchical structure like XML and JSON using data models to convey the structure, operations, and constraints of each data form. The starting point of the book is a foundation in Python programming found in introductory computer science classes or short courses on the language, and so does not require prerequisites of data structures, algorithms, or other courses. This makes the material accessible to students early in their educational career and equips them with understanding and skills that can be applied in computer science, data science/data analytics, and information technology programs as well as for internships and research experiences. This book is accessible to a wide variety of students. By drawing together content normally spread across upper level computer science courses, it offers a single source providing the essentials for data science practitioners. In our increasingly data-centric world, students from all domains will benefit from the “data-aptitude” built by the material in this book.


Data Science and Human-Environment Systems

Data Science and Human-Environment Systems

Author: Steven M. Manson

Publisher: Cambridge University Press

Published: 2023-01-31

Total Pages: 271

ISBN-13: 1108787436

DOWNLOAD EBOOK

Transformation of the Earth's social and ecological systems is occurring at a rate and magnitude unparalleled in human experience. Data science is a revolutionary new way to understand human-environment relationships at the heart of pressing challenges like climate change and sustainable development. However, data science faces serious shortcomings when it comes to human-environment research. There are challenges with social and environmental data, the methods that manipulate and analyze the information, and the theory underlying the data science itself; as well as significant legal, ethical and policy concerns. This timely book offers a comprehensive, balanced, and accessible account of the promise and problems of this work in terms of data, methods, theory, and policy. It demonstrates the need for data scientists to work with human-environment scholars to tackle pressing real-world problems, making it ideal for researchers and graduate students in Earth and environmental science, data science and the environmental social sciences.


Annual Review of Information Science and Technology

Annual Review of Information Science and Technology

Author: Blaise Cronin

Publisher: Information Today, Inc.

Published: 2004

Total Pages: 712

ISBN-13: 9781573872096

DOWNLOAD EBOOK

ARIST, published annually since 1966, is a landmark publication within the information science community. It surveys the landscape of information science and technology, providing an analytical, authoritative, and accessible overview of recent trends and significant developments. The range of topics varies considerably, reflecting the dynamism of the discipline and the diversity of theoretical and applied perspectives. While ARIST continues to cover key topics associated with "classical" information science (e.g., bibliometrics, information retrieval), editor Blaise Cronin is selectively expanding its footprint in an effort to connect information science more tightly with cognate academic and professional communities.