This volume, Applied Chemistry and Chemical Engineering, Volume 5: Research Methodologies in Modern Chemistry and Applied Science, is designed to fulfill the requirements of scientists and engineers who wish to be able to carry out experimental research in chemistry and applied science using modern methods. Each chapter describes the principle of the respective method, as well as the detailed procedures of experiments with examples of actual applications. Thus, readers will be able to apply the concepts as described in the book to their own experiments. This book traces the progress made in this field and its sub-fields and also highlight some of the key theories and their applications and will be a valuable resource for chemical engineers in Materials Science and others.
This book covers many important aspects of applied chemistry and chemical engineering, focusing on three main aspects: principles, methodology and evaluation methods. It presents a selection of chapters on recent developments of theoretical, mathematical, and computational conceptions, as well as chapters on modeling and simulation of specific research themes covering applied chemistry and chemical engineering. This book attempts to bridge the gap between classical analysis and modern applications. Covering a selection of topics within the field of applied chemistry and chemical engineering, the book is divided into several parts: polymer chemistry and technology bioorganic and biological chemistry nanoscale technology selected topics This book is the second of the two-volume series Applied Chemistry and Chemical Engineering. The first volume is Volume 1: Mathematical and Analytical Techniques.
Understanding mathematical modeling is fundamental in chemical engineering. This book reviews, introduces, and develops the mathematical models that are most frequently encountered in sophisticated chemical engineering domains. The volume provides a collection of models illustrating the power and richness of the mathematical sciences in supplying insight into the operation of important real-world systems. It fills a gap within modeling texts, focusing on applications across a broad range of disciplines. The first part of the book discusses the general components of the modeling process and highlights the potential of modeling in the production of nanofibers. These chapters discuss the general components of the modeling process and the evolutionary nature of successful model building in the electrospinning process. Electrospinning is the most versatile technique for the preparation of continuous nanofibers obtained from numerous materials. This section of book summarizes the state-of-the art in electrospinning as well as updates on theoretical aspects and applications. Part 2 of the book presents a selection of special topics on issues in applied chemistry and chemical engineering, including nanocomposite coating processes by electrocodeposition method, entropic factors conformational interactions, and the application of artificial neural network and meta-heuristic algorithms. This volume covers a wide range of topics in mathematical modeling, computational science, and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines.
Applied Chemistry and Chemical Engineering, Volume 4: Experimental Techniques and Methodical Developments provides a detailed yet easy-to-follow treatment of various techniques useful for characterizing the structure and properties of engineering materials. This timely volume provides an overview of new methods and presents experimental research in applied chemistry using modern approaches. Each chapter describes the principle of the respective method as well as the detailed procedures of experiments with examples of actual applications and then goes on to demonstrate the advantage and disadvantages of each physical technique. Thus, readers will be able to apply the concepts as described in the book to their own experiments. The book is broken into several subsections: Polymer Chemistry and Technology Computational Approaches Clinical Chemistry and Bioinformatics Special Topics This volume presents research and reviews and information on implementing and sustaining interdisciplinary studies in science, technology, engineering, and mathematics.
This new book brings together innovative research, new concepts, and novel developments in the application of informatics tools for applied chemistry and computer science. It presents a modern approach to modeling and calculation and also looks at experimental design in applied chemistry and chemical engineering. The volume discusses the developments of advanced chemical products and respective tools to characterize and predict the chemical material properties and behavior. Providing numerous comparisons of different methods with one another and with different experiments, not only does this book summarize the classical theories, but it also exhibits their engineering applications in response to the current key issues. Recent trends in several areas of chemistry and chemical engineering science, which have important application to practice, are discussed. Applied Chemistry and Chemical Engineering: Volume 1: Mathematical and Analytical Techniques provides valuable information for chemical engineers and researchers as well as for graduate students. It demonstrates the progress and promise for developing chemical materials that seem capable of moving this field from laboratory-scale prototypes to actual industrial applications. Volume 2 will focus principles and methodologies in applied chemistry and chemical engineering.
This updated edition of Gesser’s classic textbook has undergone a full revision and now has the latest material, including new chapters on semiconductors and nanotechnology. It includes a supplementary laboratory section with stepwise experimental protocols.
This book, Chemistry and Industrial Techniques for Chemical Engineers, brings together innovative research, new concepts, and novel developments in the application of new tools for chemical and materials engineers. It contains significant research, reporting new methodologies, and important applications in the fields of chemical engineering as well as the latest coverage of chemical databases and the development of new methods and efficient approaches for chemists. With clear explanations, real-world examples, this volume emphasizes the concepts essential to the practice of chemical science, engineering, and technology while introducing the newest innovations in the field.
Physical Chemistry for Engineering and Applied Sciences is the product of over 30 years of teaching first-year Physical Chemistry as part of the Faculty of Applied Science and Engineering at the University of Toronto. Designed to be as rigorous as compatible with a first-year student's ability to understand, the text presents detailed step-by-step