Applications of RNA-Seq in Biology and Medicine

Applications of RNA-Seq in Biology and Medicine

Author: Irina Vlasova-St. Louis

Publisher: BoD – Books on Demand

Published: 2021-10-13

Total Pages: 144

ISBN-13: 1839626860

DOWNLOAD EBOOK

This book evaluates and comprehensively summarizes the scientific findings that have been achieved through RNA-sequencing (RNA-Seq) technology. RNA-Seq transcriptome profiling of healthy and diseased tissues allows FOR understanding the alterations in cellular phenotypes through the expression of differentially spliced RNA isoforms. Assessment of gene expression by RNA-Seq provides new insight into host response to pathogens, drugs, allergens, and other environmental triggers. RNA-Seq allows us to accurately capture all subtypes of RNA molecules, in any sequenced organism or single-cell type, under different experimental conditions. Merging genomics and transcriptomic profiling provides novel information underlying causative DNA mutations. Combining RNA-Seq with immunoprecipitation and cross-linking techniques is a clever multi-omics strategy assessing transcriptional, post-transcriptional and post-translational levels of gene expression regulation.


Applications of RNA-Seq and Omics Strategies

Applications of RNA-Seq and Omics Strategies

Author: Fabio Marchi

Publisher: BoD – Books on Demand

Published: 2017-09-13

Total Pages: 330

ISBN-13: 9535135031

DOWNLOAD EBOOK

The large potential of RNA sequencing and other "omics" techniques has contributed to the production of a huge amount of data pursuing to answer many different questions that surround the science's great unknowns. This book presents an overview about powerful and cost-efficient methods for a comprehensive analysis of RNA-Seq data, introducing and revising advanced concepts in data analysis using the most current algorithms. A holistic view about the entire context where transcriptome is inserted is also discussed here encompassing biological areas with remarkable technological advances in the study of systems biology, from microorganisms to precision medicine.


Evolution of Translational Omics

Evolution of Translational Omics

Author: Institute of Medicine

Publisher: National Academies Press

Published: 2012-09-13

Total Pages: 354

ISBN-13: 0309224187

DOWNLOAD EBOOK

Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.


Biological Sequence Analysis

Biological Sequence Analysis

Author: Richard Durbin

Publisher: Cambridge University Press

Published: 1998-04-23

Total Pages: 372

ISBN-13: 113945739X

DOWNLOAD EBOOK

Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.


RNA-seq Data Analysis

RNA-seq Data Analysis

Author: Eija Korpelainen

Publisher: CRC Press

Published: 2014-09-19

Total Pages: 314

ISBN-13: 1466595019

DOWNLOAD EBOOK

The State of the Art in Transcriptome AnalysisRNA sequencing (RNA-seq) data offers unprecedented information about the transcriptome, but harnessing this information with bioinformatics tools is typically a bottleneck. RNA-seq Data Analysis: A Practical Approach enables researchers to examine differential expression at gene, exon, and transcript le


Mapping and Sequencing the Human Genome

Mapping and Sequencing the Human Genome

Author: National Research Council

Publisher: National Academies Press

Published: 1988-01-01

Total Pages: 128

ISBN-13: 0309038405

DOWNLOAD EBOOK

There is growing enthusiasm in the scientific community about the prospect of mapping and sequencing the human genome, a monumental project that will have far-reaching consequences for medicine, biology, technology, and other fields. But how will such an effort be organized and funded? How will we develop the new technologies that are needed? What new legal, social, and ethical questions will be raised? Mapping and Sequencing the Human Genome is a blueprint for this proposed project. The authors offer a highly readable explanation of the technical aspects of genetic mapping and sequencing, and they recommend specific interim and long-range research goals, organizational strategies, and funding levels. They also outline some of the legal and social questions that might arise and urge their early consideration by policymakers.


Computational Genomics with R

Computational Genomics with R

Author: Altuna Akalin

Publisher: CRC Press

Published: 2020-12-16

Total Pages: 463

ISBN-13: 1498781861

DOWNLOAD EBOOK

Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.


Transcriptome Data Analysis

Transcriptome Data Analysis

Author: Yejun Wang

Publisher: Humana

Published: 2019-03-20

Total Pages: 238

ISBN-13: 9781493992645

DOWNLOAD EBOOK

This detailed volume provides comprehensive practical guidance on transcriptome data analysis for a variety of scientific purposes. Beginning with general protocols, the collection moves on to explore protocols for gene characterization analysis with RNA-seq data as well as protocols on several new applications of transcriptome studies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and useful, Transcriptome Data Analysis: Methods and Protocols serves as an ideal guide to the expanding purposes of this field of study.