Applications of Nonlinear Dynamics

Applications of Nonlinear Dynamics

Author: Visarath In

Publisher: Springer Science & Business Media

Published: 2009-02-11

Total Pages: 464

ISBN-13: 3540856323

DOWNLOAD EBOOK

The ?eld of applied nonlinear dynamics has attracted scientists and engineers across many different disciplines to develop innovative ideas and methods to study c- plex behavior exhibited by relatively simple systems. Examples include: population dynamics, ?uidization processes, applied optics, stochastic resonance, ?ocking and ?ightformations,lasers,andmechanicalandelectricaloscillators. Acommontheme among these and many other examples is the underlying universal laws of nonl- ear science that govern the behavior, in space and time, of a given system. These laws are universal in the sense that they transcend the model-speci?c features of a system and so they can be readily applied to explain and predict the behavior of a wide ranging phenomena, natural and arti?cial ones. Thus the emphasis in the past decades has been in explaining nonlinear phenomena with signi?cantly less att- tion paid to exploiting the rich behavior of nonlinear systems to design and fabricate new devices that can operate more ef?ciently. Recently, there has been a series of meetings on topics such as Experimental Chaos, Neural Coding, and Stochastic Resonance, which have brought together many researchers in the ?eld of nonlinear dynamics to discuss, mainly, theoretical ideas that may have the potential for further implementation. In contrast, the goal of the 2007 ICAND (International Conference on Applied Nonlinear Dynamics) was focused more sharply on the implementation of theoretical ideas into actual - vices and systems.


Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos

Author: Steven H. Strogatz

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 532

ISBN-13: 0429961111

DOWNLOAD EBOOK

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.


Applications of Chaos and Nonlinear Dynamics in Engineering -

Applications of Chaos and Nonlinear Dynamics in Engineering -

Author: Santo Banerjee

Publisher: Springer Science & Business Media

Published: 2011-09-10

Total Pages: 349

ISBN-13: 3642219217

DOWNLOAD EBOOK

Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology—and even well beyond. Wherever quantitative modeling and analysis of complex, nonlinear phenomena is required, chaos theory and its methods can play a key role. This volume concentrates on reviewing the most relevant contemporary applications of chaotic nonlinear systems as they apply to the various cutting-edge branches of engineering. The book covers the theory as applied to robotics, electronic and communication engineering (for example chaos synchronization and cryptography) as well as to civil and mechanical engineering, where its use in damage monitoring and control is explored). Featuring contributions from active and leading research groups, this collection is ideal both as a reference and as a ‘recipe book’ full of tried and tested, successful engineering applications


Nonlinear Dynamics

Nonlinear Dynamics

Author: George Datseris

Publisher: Springer Nature

Published: 2022-03-13

Total Pages: 243

ISBN-13: 3030910326

DOWNLOAD EBOOK

This concise and up-to-date textbook provides an accessible introduction to the core concepts of nonlinear dynamics as well as its existing and potential applications. The book is aimed at students and researchers in all the diverse fields in which nonlinear phenomena are important. Since most tasks in nonlinear dynamics cannot be treated analytically, skills in using numerical simulations are crucial for analyzing these phenomena. The text therefore addresses in detail appropriate computational methods as well as identifying the pitfalls of numerical simulations. It includes numerous executable code snippets referring to open source Julia software packages. Each chapter includes a selection of exercises with which students can test and deepen their skills.


Nonlinear Dynamics in Complex Systems

Nonlinear Dynamics in Complex Systems

Author: Armin Fuchs

Publisher: Springer Science & Business Media

Published: 2012-09-22

Total Pages: 237

ISBN-13: 3642335527

DOWNLOAD EBOOK

With many areas of science reaching across their boundaries and becoming more and more interdisciplinary, students and researchers in these fields are confronted with techniques and tools not covered by their particular education. Especially in the life- and neurosciences quantitative models based on nonlinear dynamics and complex systems are becoming as frequently implemented as traditional statistical analysis. Unfamiliarity with the terminology and rigorous mathematics may discourage many scientists to adopt these methods for their own work, even though such reluctance in most cases is not justified. This book bridges this gap by introducing the procedures and methods used for analyzing nonlinear dynamical systems. In Part I, the concepts of fixed points, phase space, stability and transitions, among others, are discussed in great detail and implemented on the basis of example elementary systems. Part II is devoted to specific, non-trivial applications: coordination of human limb movement (Haken-Kelso-Bunz model), self-organization and pattern formation in complex systems (Synergetics), and models of dynamical properties of neurons (Hodgkin-Huxley, Fitzhugh-Nagumo and Hindmarsh-Rose). Part III may serve as a refresher and companion of some mathematical basics that have been forgotten or were not covered in basic math courses. Finally, the appendix contains an explicit derivation and basic numerical methods together with some programming examples as well as solutions to the exercises provided at the end of certain chapters. Throughout this book all derivations are as detailed and explicit as possible, and everybody with some knowledge of calculus should be able to extract meaningful guidance follow and apply the methods of nonlinear dynamics to their own work. “This book is a masterful treatment, one might even say a gift, to the interdisciplinary scientist of the future.” “With the authoritative voice of a genuine practitioner, Fuchs is a master teacher of how to handle complex dynamical systems.” “What I find beautiful in this book is its clarity, the clear definition of terms, every step explained simply and systematically.” (J.A.Scott Kelso, excerpts from the foreword)


Biological Systems: Nonlinear Dynamics Approach

Biological Systems: Nonlinear Dynamics Approach

Author: Jorge Carballido-Landeira

Publisher: Springer

Published: 2019-04-29

Total Pages: 111

ISBN-13: 303016585X

DOWNLOAD EBOOK

This book collects recent advances in the field of nonlinear dynamics in biological systems. Focusing on medical applications as well as more fundamental questions in biochemistry, it presents recent findings in areas such as control in chemically driven reaction-diffusion systems, electrical wave propagation through heart tissue, neural network growth, chiral symmetry breaking in polymers and mechanochemical pattern formation in the cytoplasm, particularly in the context of cardiac cells. It is a compilation of works, including contributions from international scientists who attended the “2nd BCAM Workshop on Nonlinear Dynamics in Biological Systems,” held at the Basque Center for Applied Mathematics, Bilbao in September 2016. Embracing diverse disciplines and using multidisciplinary approaches – including theoretical concepts, simulations and experiments – these contributions highlight the nonlinear nature of biological systems in order to be able to reproduce their complex behavior. Edited by the conference organizers and featuring results that represent recent findings and not necessarily those presented at the conference, the book appeals to applied mathematicians, biophysicists and computational biologists.


Linear, Time-varying Approximations to Nonlinear Dynamical Systems

Linear, Time-varying Approximations to Nonlinear Dynamical Systems

Author: Maria Tomas-Rodriguez

Publisher: Springer Science & Business Media

Published: 2010-02-04

Total Pages: 303

ISBN-13: 184996100X

DOWNLOAD EBOOK

Linear, Time-varying Approximations to Nonlinear Dynamical Systems introduces a new technique for analysing and controlling nonlinear systems. This method is general and requires only very mild conditions on the system nonlinearities, setting it apart from other techniques such as those – well-known – based on differential geometry. The authors cover many aspects of nonlinear systems including stability theory, control design and extensions to distributed parameter systems. Many of the classical and modern control design methods which can be applied to linear, time-varying systems can be extended to nonlinear systems by this technique. The implementation of the control is therefore simple and can be done with well-established classical methods. Many aspects of nonlinear systems, such as spectral theory which is important for the generalisation of frequency domain methods, can be approached by this method.


Control of Nonlinear Dynamical Systems

Control of Nonlinear Dynamical Systems

Author: Felix L. Chernous'ko

Publisher: Springer Science & Business Media

Published: 2008-09-26

Total Pages: 398

ISBN-13: 3540707840

DOWNLOAD EBOOK

This book is devoted to new methods of control for complex dynamical systems and deals with nonlinear control systems having several degrees of freedom, subjected to unknown disturbances, and containing uncertain parameters. Various constraints are imposed on control inputs and state variables or their combinations. The book contains an introduction to the theory of optimal control and the theory of stability of motion, and also a description of some known methods based on these theories. Major attention is given to new methods of control developed by the authors over the last 15 years. Mechanical and electromechanical systems described by nonlinear Lagrange’s equations are considered. General methods are proposed for an effective construction of the required control, often in an explicit form. The book contains various techniques including the decomposition of nonlinear control systems with many degrees of freedom, piecewise linear feedback control based on Lyapunov’s functions, methods which elaborate and extend the approaches of the conventional control theory, optimal control, differential games, and the theory of stability. The distinctive feature of the methods developed in the book is that the c- trols obtained satisfy the imposed constraints and steer the dynamical system to a prescribed terminal state in ?nite time. Explicit upper estimates for the time of the process are given. In all cases, the control algorithms and the estimates obtained are strictly proven.


Nonlinear Systems

Nonlinear Systems

Author: Christos K. Volos

Publisher: Nova Science Publishers

Published: 2017

Total Pages: 375

ISBN-13: 9781536123166

DOWNLOAD EBOOK

A nonlinear system is a set of nonlinear equations, which may be algebraic, ordinary differential, partial differential, fractional, integral or a combination of these. Especially, nowadays, the term "dynamical system" is used as a synonym of nonlinear systems where the nonlinear equations represent the evolution of a solution over time. So, the notion of dynamical systems arose following the name of equations governing the motion of a system of particles, even though the nonlinear system may have no application to mechanics. Also, from an engineering point of view a nonlinear system may be represented with a feedback loop in which the output of an element is not proportional to its input. Over the last few decades, nonlinear systems have been used to describe a great variety of phenomena, in social and life sciences as well as in physical sciences and engineering. The theory of nonlinear systems has applications to problems of population growth, economics, chemical reactions, celestial mechanics, physiology of nerves, onset of turbulence, regulation of heartbeats, electronic circuits, cryptography, secure communications and many others. Nonlinear dynamical systems, which present chaotic behavior, are of great importance due to their applications in science and engineering. Chaotic systems are nonlinear dynamical systems and maps that are highly sensitive to initial conditions. The sensitivity of initial conditions is usually called the butter'y effect for dynamical systems and maps. So, nowadays the design and analysis of nonlinear systems and especially chaotic systems has gained the interest of the research community due to the fact that many phenomena on financial, physical, biological, chemical, mechanical and engineering systems can be modeled and studied through the perspective of nonlinear dynamics. These nonlinear systems can be modeled by discrete-time or continuous-time mathematical models.This book aims to bridge the gap between the design/analysis and applications, which are the two research stages on the progress of nonlinear systems and also which open up some new directions of real applications, where chaos can be put up to technological use, including secure communication systems, electronic circuits' design, memristors and radar. Finally, this book can serve as an updated and handy reference for university professors, graduate students, laboratory researchers as well as physicists and applied mathematicians who are interested in studying the chaos and its applications through the field of nonlinear systems.


Applied Nonlinear Dynamics

Applied Nonlinear Dynamics

Author: Ali H. Nayfeh

Publisher: John Wiley & Sons

Published: 2008-11-20

Total Pages: 700

ISBN-13: 3527617558

DOWNLOAD EBOOK

A unified and coherent treatment of analytical, computational and experimental techniques of nonlinear dynamics with numerous illustrative applications. Features a discourse on geometric concepts such as Poincaré maps. Discusses chaos, stability and bifurcation analysis for systems of differential and algebraic equations. Includes scores of examples to facilitate understanding.