Applications of NMR Spectroscopy is a book series devoted to publishing the latest advances in the applications of nuclear magnetic resonance (NMR) spectroscopy in various fields of organic chemistry, biochemistry, health and agriculture. The fifth volume of the series features several reviews focusing on NMR spectroscopic techniques for identifying natural and synthetic compounds (polymer and peptide characterization, GABA in tinnitus affected mice), medical diagnosis and therapy (gliomas) and food analysis. The spectroscopic methods highlighted in this volume include high resolution proton magnetic resonance spectroscopy and solid state NMR.
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and widely used techniques in chemical research for investigating structures and dynamics of molecules. Advanced methods can even be utilized for structure determinations of biopolymers, for example proteins or nucleic acids. NMR is also used in medicine for magnetic resonance imaging (MRI). The method is based on spectral lines of different atomic nuclei that are excited when a strong magnetic field and a radiofrequency transmitter are applied. The method is very sensitive to the features of molecular structure because also the neighboring atoms influence the signals from individual nuclei and this is important for determining the 3D-structure of molecules. This new edition of the popular classic has a clear style and a highly practical, mostly non-mathematical approach. Many examples are taken from organic and organometallic chemistry, making this book an invaluable guide to undergraduate and graduate students of organic chemistry, biochemistry, spectroscopy or physical chemistry, and to researchers using this well-established and extremely important technique. Problems and solutions are included.
NMR Spectroscopy Explained : Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology provides a fresh, practical guide to NMR for both students and practitioners, in a clearly written and non-mathematical format. It gives the reader an intermediate level theoretical basis for understanding laboratory applications, developing concepts gradually within the context of examples and useful experiments. Introduces students to modern NMR as applied to analysis of organic compounds. Presents material in a clear, conversational style that is appealing to students. Contains comprehensive coverage of how NMR experiments actually work. Combines basic ideas with practical implementation of the spectrometer. Provides an intermediate level theoretical basis for understanding laboratory experiments. Develops concepts gradually within the context of examples and useful experiments. Introduces the product operator formalism after introducing the simpler (but limited) vector model.
Nuclear Magnetic Resonance (NMR) spectroscopy, a physical phenomenon based upon the magnetic properties of certain atomic nuclei, has found a wide range of applications in life sciences over recent decades. This up-to-date volume covers NMR techniques and their application to proteins, with a focus on practical details. Providing newcomers to NMR with practical guidance to carry out successful experiments with proteins and analyze the resulting spectra, those familiar with the chemical applications of NMR will also find it useful in understanding the special requirements of protein NMR.
Combines clear and concise discussions of key NMR concepts with succinct and illustrative examples Designed to cover a full course in Nuclear Magnetic Resonance (NMR) Spectroscopy, this text offers complete coverage of classic (one-dimensional) NMR as well as up-to-date coverage of two-dimensional NMR and other modern methods. It contains practical advice, theory, illustrated applications, and classroom-tested problems; looks at such important ideas as relaxation, NOEs, phase cycling, and processing parameters; and provides brief, yet fully comprehensible, examples. It also uniquely lists all of the general parameters for many experiments including mixing times, number of scans, relaxation times, and more. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition begins by introducing readers to NMR spectroscopy - an analytical technique used in modern chemistry, biochemistry, and biology that allows identification and characterization of organic, and some inorganic, compounds. It offers chapters covering: Experimental Methods; The Chemical Shift; The Coupling Constant; Further Topics in One-Dimensional NMR Spectroscopy; Two-Dimensional NMR Spectroscopy; Advanced Experimental Methods; and Structural Elucidation. Features classical analysis of chemical shifts and coupling constants for both protons and other nuclei, as well as modern multi‐pulse and multi-dimensional methods Contains experimental procedures and practical advice relative to the execution of NMR experiments Includes a chapter-long, worked-out problem that illustrates the application of nearly all current methods Offers appendices containing the theoretical basis of NMR, including the most modern approach that uses product operators and coherence-level diagrams By offering a balance between volumes aimed at NMR specialists and the structure-determination-only books that focus on synthetic organic chemists, Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition is an excellent text for students and post-graduate students working in analytical and bio-sciences, as well as scientists who use NMR spectroscopy as a primary tool in their work.
This book describes the advanced developments in methodology and applications of NMR spectroscopy to life science and materials science. Experts who are leaders in the development of new methods and applications of life and material sciences have contributed an exciting range of topics that cover recent advances in structural determination of biological and material molecules, dynamic aspects of biological and material molecules, and development of novel NMR techniques, including resolution and sensitivity enhancement. First, this book particularly emphasizes the experimental details for new researchers to use NMR spectroscopy and pick up the potentials of NMR spectroscopy. Second, the book is designed for those who are involved in either developing the technique or expanding the NMR application fields by applying them to specific samples. Third, the Nuclear Magnetic Resonance Society of Japan has organized this book not only for NMR members of Japan but also for readers worldwide who are interested in using NMR spectroscopy extensively.
Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful and theoretically complex analytical tool. Basic 1H- and 13C-NMR Spectroscopy provides an introduction to the principles and applications of NMR spectroscopy. Whilst looking at the problems students encounter when using NMR spectroscopy, the author avoids the complicated mathematics that are applied within the field. Providing a rational description of the NMR phenomenon, this book is easy to read and is suitable for the undergraduate and graduate student in chemistry. - Describes the fundamental principles of the pulse NMR experiment and 2D NMR spectra - Easy to read and written with the undergraduate and graduate chemistry student in mind - Provides a rational description of NMR spectroscopy without complicated mathematics
NMR has become the most diverse spectroscopic tool available to date in biomedical research. It is now routinely used to study biomolecular structure and dynamics particularly as a result of recent developments of a cascade of highly sophisticated multidimensional NMR pulse sequences, and of advances in genetic engineering to produce biomolecules, uniformly or selectively enriched with 13C, 15N and 2H.Features of this book:• Provides an up-to-date treatment of NMR techniques and their application to problems of biomedical interest• Most refined multidimensional pulse sequences including the basic aspects are covered by leading NMR spectroscopists.The book will be useful to NMR spectroscopists, biochemists, and to molecular biologists interested in the use of NMR techniques for solving biological problems.
Applications of NMR Spectroscopy, Volume 1, originally published by Bentham and now distributed by Elsevier, presents the latest developments in the field of NMR spectroscopy, including the analysis of edible oils and lipid content in foods, the role of NMR spectroscopy in the human metabolomics and the diagnosis of autism-related disorders, protein-protein interactions, and NMR spectroscopy of chiral molecules. The fully illustrated chapters contain comprehensive references to the recent literature. The applications presented cover a wide range of the field, such as drug development, medical imaging and diagnostics, food science, mining, petrochemical, process control, materials science, and chemical engineering, making this resource a multi-disciplinary reference with broad applications. The content is ideal for readers who are seeking reviews and updates, as it consolidates scientific articles of a diverse nature into a single volume. Sections are organized based on disciplines, such as food science and medical diagnostics. Each chapter is written by eminent experts in the field. - Consolidates the latest developments in NMR spectroscopy into a single volume - Authored and edited by world-leading experts in spectroscopy - Features comprehensive references to the most recent related literature - More than 75 illustrations aid in the retention of key concepts
During the last two decades, the use of NMR spectroscopy for the characterization and analysis of food materials has flourished, and this trend continues to increase today. Currently, there exists no book that fulfils specifically the needs of food scientists that are interested in adding or expanding the use of NMR spectroscopy in their arsenal of food analysis techniques. Current books and monographs are rather addressed to experienced researchers in food analysis providing new information in the field. This book, written by acknowledged experts in the field, fills the gap by offering a day to day NMR guide for the food scientist, affording not only the basic theoretical aspects of NMR spectroscopy, but also practical information on sample preparation, experimental conditions and data analysis. Current developments in the field covered in this book are the availability of solid state NMR experiments such as CP/MAS and more importantly HR-MAS NMR for the analysis of semisolid foods, and the increasing use of chemometrics to analyze NMR data in food metabonomics. Moreover, this book contains an up to date discussion of MRI in food analysis including topics such as food processing and natural changes in food such as ripening. The book is a compact and complete source of information for food scientists who wish to apply methodologies based on NMR spectroscopy in food analysis. It contains information so far scattered in the primary literature, in NMR treatises and food analysis books, in a concise format that makes it appealing to food scientists who have no or minimal experience in magnetic resonance techniques. The inclusion of practical information about NMR instrumentation, experiment setup, acquisition and spectral analysis for the study of different food categories make this book a hands-on manual for food scientists wishing to implement novel NMR spectroscopy-based analytical techniques in their field.