This book constitutes the refereed proceedings of the 23rd International Conference on Applications of Natural Language to Information Systems, NLDB 2018, held in Paris, France, in June 2018. The 18 full papers, 26 short papers, and 9 poster papers presented were carefully reviewed and selected from 99 submissions. The papers are organized in the following topical sections: Opinion Mining and Sentiment Analysis in Social Media; Semantics-Based Models and Applications; Neural Networks Based Approaches; Ontology Engineering; NLP; Text Similarities and Plagiarism Detection; Text Classification; Information Mining; Recommendation Systems; Translation and Foreign Language Querying; Software Requirement and Checking.
This book explains how can be created information extraction (IE) applications that are able to tap the vast amount of relevant information available in natural language sources: Internet pages, official documents such as laws and regulations, books and newspapers, and social web. Readers are introduced to the problem of IE and its current challenges and limitations, supported with examples. The book discusses the need to fill the gap between documents, data, and people, and provides a broad overview of the technology supporting IE. The authors present a generic architecture for developing systems that are able to learn how to extract relevant information from natural language documents, and illustrate how to implement working systems using state-of-the-art and freely available software tools. The book also discusses concrete applications illustrating IE uses. · Provides an overview of state-of-the-art technology in information extraction (IE), discussing achievements and limitations for the software developer and providing references for specialized literature in the area · Presents a comprehensive list of freely available, high quality software for several subtasks of IE and for several natural languages · Describes a generic architecture that can learn how to extract information for a given application domain
"This book provides pertinent and vital information that researchers, postgraduate, doctoral students, and practitioners are seeking for learning about the latest discoveries and advances in NLP methodologies and applications of NLP"--Provided by publisher.
Applications of Natural Language to Information Systems covers high academic quality papers on the following topics: natural language interfaces to databases, information retrieval, use of linguistic tools and electronic dictionaries, conceptual modelling, paraphrasing and validating information system models, the use of natural language as a specification interface for the design of information systems, linguistic aspects of database view integration and hypertext facilities for database querying. Furthermore the typical applications of natural language, are addressed, presented both from a scientific as well as an industrial perspective by Peter Chen, the inventor of the ER model, and Gerald Kristen, the founder of the KISS company. Other topics: - Natural Language Specification; - Natural Language Paraphrasing; - Linguistic Tools and Electronic Dictionaries; - Database Hypertext Facilities; - Information Retrieval; - Natural Language Database Interfaces; - Conceptual Modeling with Linguistic Knowledge; - Linguistic Aspects of Database View Integration.
This book constitutes the refereed proceedings of the 25th International Conference on Applications of Natural Language to Information Systems, NLDB 2020, held in Saarbrücken, Germany, in June 2020.* The 15 full papers and 10 short papers were carefully reviewed and selected from 68 submissions. The papers are organized in the following topical sections: semantic analysis; question answering and answer generation; classification; sentiment analysis; personality, affect and emotion; retrieval, conversational agents and multimodal analysis. *The conference was held virtually due to the COVID-19 pandemic.
To sustain and stay at the top of the market and give absolute comfort to the consumers, industries are using different strategies and technologies. Natural language processing (NLP) is a technology widely penetrating the market, irrespective of the industry and domains. It is extensively applied in businesses today, and it is the buzzword in every engineer’s life. NLP can be implemented in all those areas where artificial intelligence is applicable either by simplifying the communication process or by refining and analyzing information. Neural machine translation has improved the imitation of professional translations over the years. When applied in neural machine translation, NLP helps educate neural machine networks. This can be used by industries to translate low-impact content including emails, regulatory texts, etc. Such machine translation tools speed up communication with partners while enriching other business interactions. Deep Natural Language Processing and AI Applications for Industry 5.0 provides innovative research on the latest findings, ideas, and applications in fields of interest that fall under the scope of NLP including computational linguistics, deep NLP, web analysis, sentiments analysis for business, and industry perspective. This book covers a wide range of topics such as deep learning, deepfakes, text mining, blockchain technology, and more, making it a crucial text for anyone interested in NLP and artificial intelligence, including academicians, researchers, professionals, industry experts, business analysts, data scientists, data analysts, healthcare system designers, intelligent system designers, practitioners, and students.
This book constitutes the refereed proceedings of the 24th International Conference on Applications of Natural Language to Information Systems, NLDB 2019, held in Salford, UK, in June 2019. The 21 full papers and 16 short papers were carefully reviewed and selected from 75 submissions. The papers are organized in the following topical sections: argumentation mining and applications; deep learning, neural languages and NLP; social media and web analytics; question answering; corpus analysis; semantic web, open linked data, and ontologies; natural language in conceptual modeling; natural language and ubiquitous computing; and big data and business intelligence.
Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective
Multilingual Natural Language Processing Applications is the first comprehensive single-source guide to building robust and accurate multilingual NLP systems. Edited by two leading experts, it integrates cutting-edge advances with practical solutions drawn from extensive field experience. Part I introduces the core concepts and theoretical foundations of modern multilingual natural language processing, presenting today’s best practices for understanding word and document structure, analyzing syntax, modeling language, recognizing entailment, and detecting redundancy. Part II thoroughly addresses the practical considerations associated with building real-world applications, including information extraction, machine translation, information retrieval/search, summarization, question answering, distillation, processing pipelines, and more. This book contains important new contributions from leading researchers at IBM, Google, Microsoft, Thomson Reuters, BBN, CMU, University of Edinburgh, University of Washington, University of North Texas, and others. Coverage includes Core NLP problems, and today’s best algorithms for attacking them Processing the diverse morphologies present in the world’s languages Uncovering syntactical structure, parsing semantics, using semantic role labeling, and scoring grammaticality Recognizing inferences, subjectivity, and opinion polarity Managing key algorithmic and design tradeoffs in real-world applications Extracting information via mention detection, coreference resolution, and events Building large-scale systems for machine translation, information retrieval, and summarization Answering complex questions through distillation and other advanced techniques Creating dialog systems that leverage advances in speech recognition, synthesis, and dialog management Constructing common infrastructure for multiple multilingual text processing applications This book will be invaluable for all engineers, software developers, researchers, and graduate students who want to process large quantities of text in multiple languages, in any environment: government, corporate, or academic.
As technology continues to become more sophisticated, a computer’s ability to understand, interpret, and manipulate natural language is also accelerating. Persistent research in the field of natural language processing enables an understanding of the world around us, in addition to opportunities for manmade computing to mirror natural language processes that have existed for centuries. Natural Language Processing: Concepts, Methodologies, Tools, and Applications is a vital reference source on the latest concepts, processes, and techniques for communication between computers and humans. Highlighting a range of topics such as machine learning, computational linguistics, and semantic analysis, this multi-volume book is ideally designed for computer engineers, computer and software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the latest trends in the field of natural language processing.