Applications of Fluid Dynamics

Applications of Fluid Dynamics

Author: M.K. Singh

Publisher: Springer

Published: 2017-11-04

Total Pages: 691

ISBN-13: 9811053294

DOWNLOAD EBOOK

The book presents high-quality papers presented at 3rd International Conference on Applications of Fluid Dynamics (ICAFD 2016) organized by Department of Applied Mathematics, ISM Dhanbad, Jharkhand, India in association with Fluid Mechanics Group, University of Botswana, Botswana. The main theme of the Conference is "Sustainable Development in Africa and Asia in context of Fluid Dynamics and Modeling Approaches". The book is divided into seven sections covering all applications of fluid dynamics and their allied areas such as fluid dynamics, nanofluid, heat and mass transfer, numerical simulations and investigations of fluid dynamics, magnetohydrodynamics flow, solute transport modeling and water jet, and miscellaneous. The book is a good reference material for scientists and professionals working in the field of fluid dynamics.


Computational Fluid Dynamics

Computational Fluid Dynamics

Author: Jiri Blazek

Publisher: Elsevier

Published: 2005-12-20

Total Pages: 491

ISBN-13: 0080529674

DOWNLOAD EBOOK

Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today’s CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies.


Fluid Dynamics in Physics, Engineering and Environmental Applications

Fluid Dynamics in Physics, Engineering and Environmental Applications

Author: Jaime Klapp

Publisher: Springer Science & Business Media

Published: 2012-10-14

Total Pages: 528

ISBN-13: 3642277225

DOWNLOAD EBOOK

The book contains invited lectures and selected contributions presented at the Enzo Levi and XVII Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2011. It is aimed to fourth year undergraduate and graduate students, and scientists in the field of physics, engineering and chemistry that have interest in Fluid Dynamics from the experimental and theoretical point of view. The invited lectures are introductory and avoid the use of complicate mathematics. The other selected contributions are also adequate to fourth year undergraduate and graduate students. The Fluid Dynamics applications include multiphase flow, convection, diffusion, heat transfer, rheology, granular material, viscous flow, porous media flow, geophysics and astrophysics. The material contained in the book includes recent advances in experimental and theoretical fluid dynamics and is adequate for both teaching and research.


Computational Fluid Dynamics

Computational Fluid Dynamics

Author: Xiaofeng Liu

Publisher:

Published: 2019-05-16

Total Pages: 186

ISBN-13: 9780784415313

DOWNLOAD EBOOK

This book provides an introduction, overview, and specific examples of computational fluid dynamics and their applications in the water, wastewater, and stormwater industry.


The Pi-Theorem

The Pi-Theorem

Author: L.P. Yarin

Publisher: Springer Science & Business Media

Published: 2012-01-21

Total Pages: 330

ISBN-13: 3642195652

DOWNLOAD EBOOK

This volume presents applications of the Pi-Theorem to fluid mechanics and heat and mass transfer. The Pi-theorem yields a physical motivation behind many flow processes and therefore it constitutes a valuable tool for the intelligent planning of experiments in fluids. After a short introduction to the underlying differential equations and their treatments, the author presents many novel approaches how to use the Pi-theorem to understand fluid mechanical issues. The book is a great value to the fluid mechanics community, as it cuts across many subdisciplines of experimental fluid mechanics.


An Introduction to Continuum Mechanics

An Introduction to Continuum Mechanics

Author: Morton E. Gurtin

Publisher: Academic Press

Published: 1982-01-12

Total Pages: 279

ISBN-13: 0080918492

DOWNLOAD EBOOK

This book presents an introduction to the classical theories of continuum mechanics; in particular, to the theories of ideal, compressible, and viscous fluids, and to the linear and nonlinear theories of elasticity. These theories are important, not only because they are applicable to a majority of the problems in continuum mechanics arising in practice, but because they form a solid base upon which one can readily construct more complex theories of material behavior. Further, although attention is limited to the classical theories, the treatment is modern with a major emphasis on foundations and structure


Modern Fluid Dynamics

Modern Fluid Dynamics

Author: Clement Kleinstreuer

Publisher: CRC Press

Published: 2018-04-25

Total Pages: 490

ISBN-13: 1351849638

DOWNLOAD EBOOK

Modern Fluid Dynamics, Second Edition provides up-to-date coverage of intermediate and advanced fluids topics. The text emphasizes fundamentals and applications, supported by worked examples and case studies. Scale analysis, non-Newtonian fluid flow, surface coating, convection heat transfer, lubrication, fluid-particle dynamics, microfluidics, entropy generation, and fluid-structure interactions are among the topics covered. Part A presents fluids principles, and prepares readers for the applications of fluid dynamics covered in Part B, which includes computer simulations and project writing. A review of the engineering math needed for fluid dynamics is included in an appendix.


A Mathematical Introduction to Fluid Mechanics

A Mathematical Introduction to Fluid Mechanics

Author: A. J. Chorin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 213

ISBN-13: 1468400827

DOWNLOAD EBOOK

These notes are based on a one-quarter (i. e. very short) course in fluid mechanics taught in the Department of Mathematics of the University of California, Berkeley during the Spring of 1978. The goal of the course was not to provide an exhaustive account of fluid mechanics, nor to assess the engineering value of various approxima tion procedures. The goals were: (i) to present some of the basic ideas of fluid mechanics in a mathematically attractive manner (which does not mean "fully rigorous"); (ii) to present the physical back ground and motivation for some constructions which have been used in recent mathematical and numerical work on the Navier-Stokes equations and on hyperbolic systems; (iil. ) 'to interest some of the students in this beautiful and difficult subject. The notes are divided into three chapters. The first chapter contains an elementary derivation of the equations; the concept of vorticity is introduced at an early stage. The second chapter contains a discussion of potential flow, vortex motion, and boundary layers. A construction of boundary layers using vortex sheets and random walks is presented; it is hoped that it helps to clarify the ideas. The third chapter contains an analysis of one-dimensional gas iv flow, from a mildly modern point of view. Weak solutions, Riemann problems, Glimm's scheme, and combustion waves are discussed. The style is informal and no attempt was made to hide the authors' biases and interests.


Applications Of Pade' Approximation Theory In Fluid Dynamics

Applications Of Pade' Approximation Theory In Fluid Dynamics

Author: Amilcare Pozzi

Publisher: World Scientific

Published: 1994-03-07

Total Pages: 257

ISBN-13: 9814504092

DOWNLOAD EBOOK

Although Padé presented his fundamental paper at the end of the last century, the studies on Padé's approximants only became significant in the second part of this century.Padé procedure is related to the theory of continued fractions, and some convergence theorems can be expressed only in terms of continued fractions. Further, Padé approximants have some advantages of practical applicability with respect to the continued-fraction theory. Moreover, as Chisholm notes, a given power series determines a set of approximants which are usually unique, whereas there are many ways of writing an associated continued fraction.The principal advantage of Padé approximants with respect to the generating Taylor series is that they provide an extension beyond the interval of convergence of the series.Padé approximants can be applied in many parts of fluid-dynamics, both in steady and in nonsteady flows, both in incompressible and in compressible regimes.This book is divided into four parts. The first one deals with the properties of the Padé approximants that are useful for the applications and illustrates, with the aid of diagrams and tables, the effectiveness of this technique in the field of applied mathematics. The second part recalls the basic equations of fluid-dynamics (those associated with the names of Navier-Stokes, Euler and Prandtl) and gives a quick derivation of them from the general balance equation. The third shows eight examples of the application of Padé approximants to steady flows, also taking into account the influence of the coupling of heat conduction in the body along which a fluid flows with conduction and convection in the fluid itself. The fourth part considers two examples of the application of Padé approximants to unsteady flows.


Modern Fluid Dynamics

Modern Fluid Dynamics

Author: Clement Kleinstreuer

Publisher: Springer Science & Business Media

Published: 2010-05-21

Total Pages: 627

ISBN-13: 9048120950

DOWNLOAD EBOOK

This textbook covers essentials of traditional and modern fluid dynamics, i. e. , the fundamentals of and basic applications in fluid mechanics and convection heat transfer with brief excursions into fluid-particle dynamics and solid mechanics. Specifically, it is suggested that the book can be used to enhance the knowledge base and skill level of engineering and physics students in macro-scale fluid mechanics (see Chaps. 1–5 and 10), followed by an int- ductory excursion into micro-scale fluid dynamics (see Chaps. 6 to 9). These ten chapters are rather self-contained, i. e. , most of the material of Chaps. 1–10 (or selectively just certain chapters) could be taught in one course, based on the students’ background. Typically, serious seniors and first-year graduate students form a receptive audience (see sample syllabus). Such as target group of students would have had prerequisites in thermodynamics, fluid mechanics and solid mechanics, where Part A would be a welcomed refresher. While introductory fluid mechanics books present the material in progressive order, i. e. , employing an inductive approach from the simple to the more difficult, the present text adopts more of a deductive approach. Indeed, understanding the derivation of the basic equations and then formulating the system-specific equations with suitable boundary conditions are two key steps for proper problem solutions.