Multi-sensor Fusion-based Vehicle Localization

Multi-sensor Fusion-based Vehicle Localization

Author: Ge Guo

Publisher: SAE International

Published: 2024-10-21

Total Pages: 20

ISBN-13: 1468608851

DOWNLOAD EBOOK

Multi-sensor fusion (MSF) is believed to be a promising tool for vehicular localization in urban environments. Due to the differences in principles and performance of various onboard vehicle sensors, MSF inevitably suffers from heterogeneous sources and vulnerability to cyber-attacks. Therefore, an essential requirement of MSF is the capability of providing a consumer-grade solution that operates in real-time, is accurate, and immune to abnormal conditions with guaranteed performance and quality of service for location-based applications. In other words, an MSF algorithm depends heavily on data synchronization, cost, an accurate process model, a prior knowledge of covariance matrices, integrity assessments, and security against cyber-attacks. Multi-sensor Fusion-based Vehicle Localization addresses trending technologies in MSF-based vehicle localization and outlines some insights into the unsettled issues and their potential solutions. The discussions and outlook are presented as a collection of key topics, including multi-sensor measurement data processing, sensory selection, filtering, integrity assessment, and cybersecurity. Click here to access the full SAE EDGETM Research Report portfolio. 9781468608854 9781468608861 https://doi.org/10.4271/EPR2024023


AI Embedded Assurance for Cyber Systems

AI Embedded Assurance for Cyber Systems

Author: Cliff Wang

Publisher: Springer Nature

Published: 2024-01-13

Total Pages: 252

ISBN-13: 3031426371

DOWNLOAD EBOOK

The rapid growth and reliance on cyber systems have permeated our society, government, and military which is demonstrated in this book. The authors discuss how AI-powered cyber systems are designed to protect against cyber threats and ensure the security and reliability of digital systems using artificial intelligence (AI) technologies. As AI becomes more integrated into various aspects of our lives, the need for reliable and trustworthy AI systems becomes increasingly important. This book is an introduction to all of the above-mentioned areas in the context of AI Embedded Assurance for Cyber Systems. This book has three themes. First, the AI/ML for digital forensics theme focuses on developing AI and ML powered forensic tools, techniques, software, and hardware. Second, the AI/ML for cyber physical system theme describes that AI/ML plays an enabling role to boost the development of cyber physical systems (CPS), especially in strengthening the security and privacy of CPS. Third, the AI/ML for cyber analysis theme focuses on using AI/ML to analyze tons of data in a timely manner and identify many complex threat patterns. This book is designed for undergraduates, graduate students in computer science and researchers in an interdisciplinary area of cyber forensics and AI embedded security applications. It is also useful for practitioners who would like to adopt AIs to solve cyber security problems.


Deep Learning and Its Applications for Vehicle Networks

Deep Learning and Its Applications for Vehicle Networks

Author: Fei Hu

Publisher: CRC Press

Published: 2023-05-12

Total Pages: 357

ISBN-13: 100087723X

DOWNLOAD EBOOK

Deep Learning (DL) is an effective approach for AI-based vehicular networks and can deliver a powerful set of tools for such vehicular network dynamics. In various domains of vehicular networks, DL can be used for learning-based channel estimation, traffic flow prediction, vehicle trajectory prediction, location-prediction-based scheduling and routing, intelligent network congestion control mechanism, smart load balancing and vertical handoff control, intelligent network security strategies, virtual smart and efficient resource allocation and intelligent distributed resource allocation methods. This book is based on the work from world-famous experts on the application of DL for vehicle networks. It consists of the following five parts: (I) DL for vehicle safety and security: This part covers the use of DL algorithms for vehicle safety or security. (II) DL for effective vehicle communications: Vehicle networks consist of vehicle-to-vehicle and vehicle-to-roadside communications. This part covers how Intelligent vehicle networks require a flexible selection of the best path across all vehicles, adaptive sending rate control based on bandwidth availability and timely data downloads from a roadside base-station. (III) DL for vehicle control: The myriad operations that require intelligent control for each individual vehicle are discussed in this part. This also includes emission control, which is based on the road traffic situation, the charging pile load is predicted through DL andvehicle speed adjustments based on the camera-captured image analysis. (IV) DL for information management: This part covers some intelligent information collection and understanding. We can use DL for energy-saving vehicle trajectory control based on the road traffic situation and given destination information; we can also natural language processing based on DL algorithm for automatic internet of things (IoT) search during driving. (V) Other applications. This part introduces the use of DL models for other vehicle controls. Autonomous vehicles are becoming more and more popular in society. The DL and its variants will play greater roles in cognitive vehicle communications and control. Other machine learning models such as deep reinforcement learning will also facilitate intelligent vehicle behavior understanding and adjustment. This book will become a valuable reference to your understanding of this critical field.


Multi-Sensor Information Fusion

Multi-Sensor Information Fusion

Author: Xue-Bo Jin

Publisher: MDPI

Published: 2020-03-23

Total Pages: 602

ISBN-13: 3039283022

DOWNLOAD EBOOK

This book includes papers from the section “Multisensor Information Fusion”, from Sensors between 2018 to 2019. It focuses on the latest research results of current multi-sensor fusion technologies and represents the latest research trends, including traditional information fusion technologies, estimation and filtering, and the latest research, artificial intelligence involving deep learning.


Detection of Intrusions and Malware, and Vulnerability Assessment

Detection of Intrusions and Malware, and Vulnerability Assessment

Author: Daniel Gruss

Publisher: Springer Nature

Published: 2023-06-09

Total Pages: 281

ISBN-13: 3031355040

DOWNLOAD EBOOK

This book constitutes the proceedings of the 20th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA 2023, held in Hamburg, Germany, in July 2023. The 12 full papers and 1 short paper presented in this volume were carefully reviewed and selected from 43 submissions. The papers are organized in thematical sections named: Side Channels Attacks; Security and Machine Learning; Cyber Physical System Security; Security Issues when Dealing with Users; Analysis of Vulnerable Code; Flow Integrity and Security.


Multisensor Data Fusion

Multisensor Data Fusion

Author: David Hall

Publisher: CRC Press

Published: 2001-06-20

Total Pages: 564

ISBN-13: 1420038540

DOWNLOAD EBOOK

The emerging technology of multisensor data fusion has a wide range of applications, both in Department of Defense (DoD) areas and in the civilian arena. The techniques of multisensor data fusion draw from an equally broad range of disciplines, including artificial intelligence, pattern recognition, and statistical estimation. With the rapid evolut


Body Sensor Networks

Body Sensor Networks

Author: Guang-Zhong Yang

Publisher: Springer

Published: 2014-04-16

Total Pages: 572

ISBN-13: 1447163745

DOWNLOAD EBOOK

The last decade has witnessed a rapid surge of interest in new sensing and monitoring devices for wellbeing and healthcare. One key development in this area is wireless, wearable and implantable in vivo monitoring and intervention. A myriad of platforms are now available from both academic institutions and commercial organisations. They permit the management of patients with both acute and chronic symptoms, including diabetes, cardiovascular diseases, treatment of epilepsy and other debilitating neurological disorders. Despite extensive developments in sensing technologies, there are significant research issues related to system integration, sensor miniaturisation, low-power sensor interface, wireless telemetry and signal processing. In the 2nd edition of this popular and authoritative reference on Body Sensor Networks (BSN), major topics related to the latest technological developments and potential clinical applications are discussed, with contents covering. Biosensor Design, Interfacing and Nanotechnology Wireless Communication and Network Topologies Communication Protocols and Standards Energy Harvesting and Power Delivery Ultra-low Power Bio-inspired Processing Multi-sensor Fusion and Context Aware Sensing Autonomic Sensing Wearable, Ingestible Sensor Integration and Exemplar Applications System Integration and Wireless Sensor Microsystems The book also provides a comprehensive review of the current wireless sensor development platforms and a step-by-step guide to developing your own BSN applications through the use of the BSN development kit.


Creating Autonomous Vehicle Systems

Creating Autonomous Vehicle Systems

Author: Shaoshan Liu

Publisher: Morgan & Claypool Publishers

Published: 2017-10-25

Total Pages: 285

ISBN-13: 1681731673

DOWNLOAD EBOOK

This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.