This book focusses on the advantageous features of membrane technology in petroleum industries with emphasis on membrane materials, olefin paraffin, oil water, aliphatic and aromatics, heavy metals, waste management, Sulphur emission, enhanced oil recovery and so forth.
Separation processesor processes that use physical, chemical, or electrical forces to isolate or concentrate selected constituents of a mixtureare essential to the chemical, petroleum refining, and materials processing industries. In this volume, an expert panel reviews the separation process needs of seven industries and identifies technologies that hold promise for meeting these needs, as well as key technologies that could enable separations. In addition, the book recommends criteria for the selection of separations research projects for the Department of Energy's Office of Industrial Technology.
This book focuses on the advantageous features of membrane technology in petroleum industries, with an emphasis on membrane materials and the application of membranes in the separation of olefin–paraffin, oil–water, aliphatic–aromatics, heavy metals, etc., along with other applications like waste management, sulphur emission, enhanced oil recovery and so forth. It also discusses the design and development of membranes from novel materials, the challenges of new materials for membrane applications, membrane-based processes and the application of novel membrane-based processes in the petroleum industry. Features: Addresses the fundamental applications of membranes in petroleum industrial separation processes Highlights the role of membrane technology in waste management in petroleum industries Includes novel engineered membrane materials Discusses methods of extracting valuable substances from produced water and membrane fouling control Emphasises solving industrial problems pertinent to membrane usage This book is aimed at researchers and graduate students in chemical and petroleum engineering and membrane technology.
This manual contains necessary and useful information and data in an easily accessible format relating to the use of membranes. Membranes are among the most important engineering components in use today, and each year more and more effective uses for membrane technologies are found - for example: water purification, industrial effluent treatment, solvent dehydration by per-vaporation, recovery of volatile organic compounds, protein recovery, bioseparations and many others.The pace of change in the membrane industry has been accelerating rapidly in recent years, occasioned in part by the demand of end-users, but also as a result of the investment in R&D by manufacturers. To reflect these changes the author has obtained the latest information from some of the leading suppliers in the business. In one complete volume this unique handbook gives practical guidance to using selected membrane processes in individual industries while also providing a useful guide to equipment selection and usage.
Petroleum Industry Wastewater: Advanced and Sustainable Treatment Methods discusses the status of different approaches and advanced processes involved in the treatment of petrochemical and petroleum industry wastewater. The book focuses on advanced, sustainable, and environmentally friendly technologies for removing toxic pollutants from contaminated waters. The book also explores the environmental aspects and impacts of the petroleum industry discharge wastewater, their effect on aquatic life, and possible ways to deal with these effects. Keeping the global water crisis and fast depletion of natural fresh water in mind, more immediate knowledge, information, implication, and effective utilization of available resources are required than we anticipated. The book brings a wide range of methodologies and perspectives under one roof in a comprehensive manner. - Describes advanced strategies and methods involved in petroleum industry water treatment - Deals with ways to treat discharged water through cutting-edge technologies - Presents an overview of pollutant degradation in industrial wastewater - Highlights advanced and technological know-how for a variety of applications
Membrane Technologies for Biorefining highlights the best practices needed for the efficient and environmentally-compatible separation techniques that are fundamental to the conversion of biomass to fuels and chemicals for use as alternatives to petroleum refining. Membrane technologies are increasingly of interest in biorefineries due to their modest energy consumption, low chemical requirements, and excellent separation efficiency. The book provides researchers in academia and industry with an authoritative overview of the different types of membranes and highlights the ways in which they can be applied in biorefineries for the production of chemicals and biofuels. Topics have been selected to highlight both the variety of raw materials treated in biorefineries and the range of biofuel and chemical end-products. - Presents the first book to focus specifically on membrane technologies in biorefineries - Provides a comprehensive overview of the different types of membranes and highlight ways in which they can be applied in biorefineries for the production of chemicals and biofuels - Topics selected highlight both the variety of raw materials treated using membranes in biorefineries and the range of biofuel and chemical end-products
Modern membrane science and technology aids engineers in developing and designing more efficient and environmentally-friendly processes. The optimal material and membrane selection as well as applications in the many involved industries are provided. This work is the ideal introduction for engineers working in membrane science and applications (wastewater, desalination, adsorption, and catalysis), process engineers in separation science, biologists and biochemists, environmental scientists, and most of all students. Its multidisciplinary approach also stimulates thinking of hybrid technologies for current and future life-saving applications (artificial organs, drug delivery).
The aim of the Technical Advisory Committee, in planning the c~:>Dtent of this meeting, was to illustrate the range of separation processes in which the use of membranes was practical and effective at an industrial scale. As Professor Strathmann reveals, the market for process equipment built around membranes is now worth about $5x1(f annually, and it seemed important to review this technology, and to point the direction of future technical advances. All but the most critical reader should find some items of interest. The Committee would admit to not fulftlling all of thier aims, although those delegates who attended the meeting in Edinburgh judged it a success. In the event it provided representative examples of processes from the food and beverage industry, from water treatment, and from the chemical industry, of which the removal of alcohol from fermented beverages, shipboard desalination and solvent recovery are three. The major uses of charged membranes and sterile processes are not covered, nor 9 is the largest market, $1.2x10 annually, for artificial kidney dialysis. However, it is interesting to see artificial kidney now finding an alternative use as a reactor for the production of monoclonal antibodies. We are also reminded by Professor Michel of the importance and efficiency of natural membranes in the kidney under conditions where fouling is crucial to their performance and enhances their selectivity.
Membrane technology has received great popularity in many industrial sectors and significantly enhanced our abilities to restructure production processes, protect the environment and public health, and provide competitive strategies for separation and purification. However, the need for sustainable development has imposed new targets for this technology, such as more effective/precise separation and stricter admissible limits for the discharge of contaminants into the environment. Focusing on hot topic environment-related applications, Advances in Functional Separation Membranes introduces emerging membranes nanoengineered with attractive functions and discusses their key features. It also provides a comprehensive guide to various design strategies for such functional membranes, making it useful reference for environmental chemists and membrane engineers alike.
Membranes and membrane separation techniques have grown from a simple laboratory tool to an industrial process with considerable technical and commercial impact. The book deals with both the fundamental concepts of preparation, characterization and modification, practical applications along with recent advancements of electro-spun and phase inverted polymeric membranes. Divided into two parts, part one of this book covers the fundamental concepts and practical applications of novel electro-spun membranes while the latter covers basic concepts and further advancements of the conventional phase inverted membranes extensively. Key Features Covers fundamental concepts and practical applications of electro-spun and phase inverted polymeric membranes Includes general properties, characterization, preparation and modification of polymeric membranes Discusses advanced modification of polymeric membranes (functionalization, grafting) using phase inversion process, and effects of solubility parameter and additives on the phase inversion process Reviews electro-spun membranes for biomedical applications, industrial effluents treatment and removal of water contaminants Explores a separate economic analysis section for the discussed membranes