Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.
Data Analytics in Reservoir Engineering describes the relevance of data analytics for the oil and gas industry, with particular emphasis on reservoir engineering.
Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.
This manual provides guidance on evaluating the condition of the concrete in a structure, relating the condition of the concrete to the underlying cause or causes of that condition, selecting an appropriate repair material and method for any deficiency found, and using the selected materials and methods to repair or rehabilitate the structure. Guidance is also included on maintenance of concrete and on preparation of concrete investigation reports for repair and rehabilitation projects. Considerations for certain specialized types of rehabilitation projects are also given.
Petroleum Rock Mechanics: Drilling Operations and Well Design, Second Edition, keeps petroleum and drilling engineers centrally focused on the basic fundamentals surrounding geomechanics, while also keeping them up-to-speed on the latest issues and practical problems. Updated with new chapters on operations surrounding shale oil, shale gas, and hydraulic fracturing, and with new sections on in-situ stress, drilling design of optimal mud weight, and wellbore instability analysis, this book is an ideal resource. By creating a link between theory with practical problems, this updated edition continues to provide the most recent research and fundamentals critical to today's drilling operations. - Helps readers grasp the techniques needed to analyze and solve drilling challenges, in particular wellbore instability analysis - Teaches rock mechanic fundamentals and presents new concepts surrounding sand production and hydraulic fracturing operations - Includes new case studies and sample problems to practice
Unconventional heavy crude oils are replacing the conventional light crude oils slowly but steadily as a major energy source. Heavy crude oils are cheaper and present an opportunity to the refiners to process them with higher profit margins. However, the unfavourable characteristics of heavy crude oils such as high viscosity, low API gravity, low H/C ratio, chemical complexity with high asphaltenes content, high acidity, high sulfur and increased level of metal and heteroatom impurities impede extraction, pumping, transportation and processing. Very poor mobility of the heavy oils, due to very high viscosities, significantly affects production and transportation. Techniques for viscosity reduction, drag reduction and in-situ upgrading of the crude oil to improve the flow characteristics in pipelines are presented in this book. The heavier and complex molecules of asphaltenes with low H/C ratios present many technological challenges during the refining of the crude oil, such as heavy coking on catalysts. Hydrogen addition and carbon removal are the two approaches used to improve the recovery of value-added products such as gasoline and diesel. In addition, the heavy crude oil needs pre-treatment to remove the high levels of impurities before the crude oil can be refined. This book introduces the major challenges and some of the methods to overcome them.
This manual provides guidance for the organization, planning, and conduct of the full range of military operations on urbanized terrain. This publication was prepared primarily for commanders, staffs, and subordinate leaders down to the squad and fire team level. It is written from a Marine air-ground task force perspective, with emphasis on the ground combat element as the most likely supported element in that environment. It provides the level of detailed information that supports the complexities of planning, preparing for, and executing small-unit combat operations on urbanized terrain. It also provides historical and environmental information that supports planning and training for combat in built-up areas