Applications of Computational Intelligence in Concrete Technology

Applications of Computational Intelligence in Concrete Technology

Author: Sakshi Gupta

Publisher: CRC Press

Published: 2022-06-23

Total Pages: 321

ISBN-13: 1000600548

DOWNLOAD EBOOK

Computational intelligence (CI) in concrete technology has not yet been fully explored worldwide because of some limitations in data sets. This book discusses the selection and separation of data sets, performance evaluation parameters for different types of concrete and related materials, and sensitivity analysis related to various CI techniques. Fundamental concepts and essential analysis for CI techniques such as artificial neural network, fuzzy system, support vector machine, and how they work together for resolving real-life problems, are explained. Features: It is the first book on this fast-growing research field. It discusses the use of various computation intelligence techniques in concrete technology applications. It explains the effectiveness of the methods used and the wide range of available techniques. It integrates a wide range of disciplines from civil engineering, construction technology, and concrete technology to computation intelligence, soft computing, data science, computer science, and so on. It brings together the experiences of contributors from around the world who are doing research in this field and explores the different aspects of their research. The technical content included is beneficial for researchers as well as practicing engineers in the concrete and construction industry.


Computational Intelligence for Water and Environmental Sciences

Computational Intelligence for Water and Environmental Sciences

Author: Omid Bozorg-Haddad

Publisher: Springer Nature

Published: 2022-07-08

Total Pages: 547

ISBN-13: 9811925194

DOWNLOAD EBOOK

This book provides a comprehensive yet fresh perspective for the cutting-edge CI-oriented approaches in water resources planning and management. The book takes a deep dive into topics like meta-heuristic evolutionary optimization algorithms (e.g., GA, PSA, etc.), data mining techniques (e.g., SVM, ANN, etc.), probabilistic and Bayesian-oriented frameworks, fuzzy logic, AI, deep learning, and expert systems. These approaches provide a practical approach to understand and resolve complicated and intertwined real-world problems that often imposed serious challenges to traditional deterministic precise frameworks. The topic caters to postgraduate students and senior researchers who are interested in computational intelligence approach to issues stemming from water and environmental sciences.


APAC 2019

APAC 2019

Author: Nguyen Trung Viet

Publisher: Springer Nature

Published: 2019-09-25

Total Pages: 1419

ISBN-13: 9811502919

DOWNLOAD EBOOK

This book presents selected articles from the International Conference on Asian and Pacific Coasts (APAC 2019), an event intended to promote academic and technical exchange on coastal related studies, including coastal engineering and coastal environmental problems, among Asian and Pacific countries/regions. APAC is jointly supported by the Chinese Ocean Engineering Society (COES), the Coastal Engineering Committee of the Japan Society of Civil Engineers (JSCE), and the Korean Society of Coastal and Ocean Engineers (KSCOE). APAC is jointly supported by the Chinese Ocean Engineering Society (COES), the Coastal Engineering Committee of the Japan Society of Civil Engineers (JSCE), and the Korean Society of Coastal and Ocean Engineers (KSCOE).


Evolution in Computational Intelligence

Evolution in Computational Intelligence

Author: Vikrant Bhateja

Publisher: Springer Nature

Published: 2023-05-27

Total Pages: 627

ISBN-13: 9811975132

DOWNLOAD EBOOK

The book presents the proceedings of the 10th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA 2022), held at NIT Mizoram, Aizawl, Mizoram, India during 18 – 19 June 2022. Researchers, scientists, engineers, and practitioners exchange new ideas and experiences in the domain of intelligent computing theories with prospective applications in various engineering disciplines in the book. These proceedings are divided into two volumes. It covers broad areas of information and decision sciences, with papers exploring both the theoretical and practical aspects of data-intensive computing, data mining, evolutionary computation, knowledge management and networks, sensor networks, signal processing, wireless networks, protocols and architectures. This volume is a valuable resource for postgraduate students in various engineering disciplines.


Computational Intelligence

Computational Intelligence

Author: Kurosh Madani

Publisher: Springer

Published: 2011-04-05

Total Pages: 290

ISBN-13: 3642202063

DOWNLOAD EBOOK

The present book includes a set of selected extended papers from the first International Joint Conference on Computational Intelligence (IJCCI 2009), held in Madeira, Portugal, from 5 to 7 October 2009. The conference was composed by three co-located conferences: The International Conference on Fuzzy Computation (ICFC), the International Conference on Evolutionary Computation (ICEC), and the International Conference on Neural Computation (ICNC). Recent progresses in scientific developments and applications in these three areas are reported in this book. IJCCI received 231 submissions, from 35 countries, in all continents. After a double blind paper review performed by the Program Committee, only 21 submissions were accepted as full papers and thus selected for oral presentation, leading to a full paper acceptance ratio of 9%. Additional papers were accepted as short papers and posters. A further selection was made after the Conference, based also on the assessment of presentation quality and audience interest, so that this book includes the extended and revised versions of the very best papers of IJCCI 2009. Commitment to high quality standards is a major concern of IJCCI that will be maintained in the next editions, considering not only the stringent paper acceptance ratios but also the quality of the program committee, keynote lectures, participation level and logistics.


Artificial Neural Networks in Hydrology

Artificial Neural Networks in Hydrology

Author: R.S. Govindaraju

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 338

ISBN-13: 9401593418

DOWNLOAD EBOOK

R. S. GOVINDARAJU and ARAMACHANDRA RAO School of Civil Engineering Purdue University West Lafayette, IN. , USA Background and Motivation The basic notion of artificial neural networks (ANNs), as we understand them today, was perhaps first formalized by McCulloch and Pitts (1943) in their model of an artificial neuron. Research in this field remained somewhat dormant in the early years, perhaps because of the limited capabilities of this method and because there was no clear indication of its potential uses. However, interest in this area picked up momentum in a dramatic fashion with the works of Hopfield (1982) and Rumelhart et al. (1986). Not only did these studies place artificial neural networks on a firmer mathematical footing, but also opened the dOOf to a host of potential applications for this computational tool. Consequently, neural network computing has progressed rapidly along all fronts: theoretical development of different learning algorithms, computing capabilities, and applications to diverse areas from neurophysiology to the stock market. . Initial studies on artificial neural networks were prompted by adesire to have computers mimic human learning. As a result, the jargon associated with the technical literature on this subject is replete with expressions such as excitation and inhibition of neurons, strength of synaptic connections, learning rates, training, and network experience. ANNs have also been referred to as neurocomputers by people who want to preserve this analogy.


Applications of Artificial Intelligence in Process Systems Engineering

Applications of Artificial Intelligence in Process Systems Engineering

Author: Jingzheng Ren

Publisher: Elsevier

Published: 2021-06-05

Total Pages: 542

ISBN-13: 012821743X

DOWNLOAD EBOOK

Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering


Applied Computational Intelligence

Applied Computational Intelligence

Author: M Sudha

Publisher: Educreation Publishing

Published: 2019-01-20

Total Pages: 128

ISBN-13:

DOWNLOAD EBOOK

Applied Computational Intelligence, presents comprehensive collection of algorithms, computational methods, implementation platform and experimental studies based on real world problems. Addresses the benefits of computational Intelligence in decision support. It will guide you with suitable examples on how to handle raw dataset and the methodologies of applied Computational Intelligence in today's challenging problems.


Practical Hydroinformatics

Practical Hydroinformatics

Author: Robert J. Abrahart

Publisher: Springer Science & Business Media

Published: 2008-10-24

Total Pages: 495

ISBN-13: 3540798811

DOWNLOAD EBOOK

Hydroinformatics is an emerging subject that is expected to gather speed, momentum and critical mass throughout the forthcoming decades of the 21st century. This book provides a broad account of numerous advances in that field - a rapidly developing discipline covering the application of information and communication technologies, modelling and computational intelligence in aquatic environments. A systematic survey, classified according to the methods used (neural networks, fuzzy logic and evolutionary optimization, in particular) is offered, together with illustrated practical applications for solving various water-related issues. ...


Flood Forecasting Using Machine Learning Methods

Flood Forecasting Using Machine Learning Methods

Author: Fi-John Chang

Publisher: MDPI

Published: 2019-02-28

Total Pages: 376

ISBN-13: 3038975486

DOWNLOAD EBOOK

Nowadays, the degree and scale of flood hazards has been massively increasing as a result of the changing climate, and large-scale floods jeopardize lives and properties, causing great economic losses, in the inundation-prone areas of the world. Early flood warning systems are promising countermeasures against flood hazards and losses. A collaborative assessment according to multiple disciplines, comprising hydrology, remote sensing, and meteorology, of the magnitude and impacts of flood hazards on inundation areas significantly contributes to model the integrity and precision of flood forecasting. Methodologically oriented countermeasures against flood hazards may involve the forecasting of reservoir inflows, river flows, tropical cyclone tracks, and flooding at different lead times and/or scales. Analyses of impacts, risks, uncertainty, resilience, and scenarios coupled with policy-oriented suggestions will give information for flood hazard mitigation. Emerging advances in computing technologies coupled with big-data mining have boosted data-driven applications, among which Machine Learning technology, with its flexibility and scalability in pattern extraction, has modernized not only scientific thinking but also predictive applications. This book explores recent Machine Learning advances on flood forecast and management in a timely manner and presents interdisciplinary approaches to modelling the complexity of flood hazards-related issues, with contributions to integrative solutions from a local, regional or global perspective.