Contemporary biomedical and clinical research is undergoing constant development thanks to the rapid advancement of various high throughput technologies at the DNA, RNA and protein levels. These technologies can generate vast amounts of raw data, making bioinformatics methodologies essential in their use for basic biomedical and clinical applications. Bioinformatics for biomedical science and clinical applications demonstrates what these cutting-edge technologies can do and examines how to design an appropriate study, including how to deal with data and address specific clinical questions. The first two chapters consider Bioinformatics and analysis of the human genome. The subsequent three chapters cover the introduction of Transcriptomics, Proteomics and Systems biomedical science. The remaining chapters move on to critical developments, clinical information and conclude with domain knowledge and adaptivity.
This book elucidates how genetic, biological and medical information can be applied to the development of personalized healthcare, medication and therapies. Focusing on aspects of the development of evidence-based approaches in bioinformatics and computational medicine, including data integration, methodologies, tools and models for clinical and translational medicine, it offers an essential introduction to clinical bioinformatics for clinical researchers and physicians, medical students and teachers, and scientists working with human disease-based omics and bioinformatics. Dr. Xiangdong Wang is a distinguished Professor of Medicine. He is Director of Shanghai Institute of Clinical Bioinformatics, Director of Fudan University Center for Clinical Bioinformatics, Deputy Director of Shanghai Respiratory Research Institute, Director of Biomedical Research Center, Fudan University Zhongshan Hospital, Shanghai, China; Dr. Christian Baumgartner is a Professor of Health Care and Biomedical Engineering at Institute of Health Care Engineering with European Notified Body of Medical Devices, Graz University of Technology, Graz, Austria; Dr. Denis Shields is a Professor of Clinical Bioinformatics at Conway Institute, Belfield, Dublin, Ireland; Dr. Hong-Wen Deng is a Professor at Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, USA; Dr. Jacques S Beckmann is a Professor and Director of Section of Clinical Bioinformatics, Swiss Institute of Bioinformatics, Switzerland.
Translational Bioinformatics in Healthcare and Medicine offers an overview of main principles of bioinformatics, biological databases, clinical informatics, health informatics, viroinformatics and real-case applications of translational bioinformatics in healthcare. Written by experts from both technology and clinical sides, the content brings together essential knowledge to make the best of recent advancements of the field. The book discusses topics such as next generation sequence analysis, genomics in clinical care, IoT applications, blockchain technology, patient centered interoperability of EHR, health data mining, and translational bioinformatics methods for drug discovery and drug repurposing. In addition, it discusses the role of bioinformatics in cancer research and viroinformatics approaches to counter viral diseases through informatics. This is a valuable resource for bioinformaticians, clinicians, healthcare professionals, graduate students and several members of biomedical field who are interested in learning more about how bioinformatics can impact in their research and practice. - Covers recent advancements in translational bioinformatics and its healthcare applications - Discusses integrative and multidisciplinary approaches to U-healthcare systems development and management - Bridges the gap among various knowledge domains in the field, integrating both technological and clinical knowledge into practical content
This collection of 25 research papers comprised of 22 original articles and 3 reviews is brought together from international leaders in bioinformatics and biostatistics. The collection highlights recent computational advances that improve the ability to analyze highly complex data sets to identify factors critical to cancer biology. Novel deep learning algorithms represent an emerging and highly valuable approach for collecting, characterizing and predicting clinical outcomes data. The collection highlights several of these approaches that are likely to become the foundation of research and clinical practice in the future. In fact, many of these technologies reveal new insights about basic cancer mechanisms by integrating data sets and structures that were previously immiscible. Accordingly, the series presented here bring forward a wide range of artificial intelligence approaches and statistical methods that can be applied to imaging and genomics data sets to identify previously unrecognized features that are critical for cancer. Our hope is that these articles will serve as a foundation for future research as the field of cancer biology transitions to integrating electronic health record, imaging, genomics and other complex datasets in order to develop new strategies that improve the overall health of individual patients.
This textbook introduces fundamental concepts of bioinformatics and computational biology to the students and researchers in biology, medicine, veterinary science, agriculture, and bioengineering . The respective chapters provide detailed information on biological databases, sequence alignment, molecular evolution, next-generation sequencing, systems biology, and statistical computing using R. The book also presents a case-based discussion on clinical, veterinary, agricultural bioinformatics, and computational bioengineering for application-based learning in the respective fields. Further, it offers readers guidance on reconstructing and analysing biological networks and highlights computational methods used in systems medicine and genome-wide association mapping of diseases. Given its scope, this textbook offers an essential introductory book on bioinformatics and computational biology for undergraduate and graduate students in the life sciences, botany, zoology, physiology, biotechnology, bioinformatics, and genomic science as well as systems biology, bioengineering and the agricultural, and veterinary sciences.
Covering the latest developments in clinical omics, this volume details the algorithms currently used in publicly available software tools. It looks at statistics, algorithms, automated data retrieval, and experimental consideration in the various omics areas.
Translational bioinformatics (TBI) involves development of storage, analytics, and advanced computational methods to harvest knowledge from voluminous biomedical and genomic data into 4P healthcare (proactive, predictive, preventive, and participatory). Translational Bioinformatics Applications in Healthcare offers a detailed overview on concepts of TBI, biological and clinical databases, clinical informatics, and pertinent real-case applications. It further illustrates recent advancements, tools, techniques, and applications of TBI in healthcare, including Internet of Things (IoT) potential, toxin databases, medical image analysis and telemedicine applications, analytics of COVID-19 CT images, viroinformatics and viral diseases, and COVID-19–related research. Covers recent technologies such as Blockchain, IoT, and Big data analytics in bioinformatics Presents the role of translational bioinformatic methods in the field of viroinformatics, as well as in drug development and repurposing Includes translational healthcare and NGS for clinical applications Illustrates translational medicine systems and their applications in better healthcare Explores medical image analysis with focus on CT images and novel coronavirus disease detection Aimed at researchers and graduate students in computational biology, data mining and knowledge discovery, algorithms and complexity, and interdisciplinary fields of studies, including bioinformatics, health-informatics, biostatistics, biomedical engineering, and viroinformatics. Khalid Raza is an Assistant Professor, the Department of Computer Science, Jamia Millia Islamia (Central University), New Delhi. His research interests include translational bioinformatics, computational intelligence methods and its applications in bioinformatics, viroinformatics, and health informatics. Nilanjan Dey is an Associate Professor, the Department of Computer Science and Engineering, JIS University, Kolkata, India. His research interests include medical imaging, machine learning, computer-aided diagnosis, and data mining.
Translational Bioinformatics and Systems Biology Methods for Personalized Medicine introduces integrative approaches in translational bioinformatics and systems biology to support the practice of personalized, precision, predictive, preventive, and participatory medicine. Through the description of important cutting-edge technologies in bioinformatics and systems biology, readers may gain an essential understanding of state-of-the-art methodologies. The book discusses topics such as the challenges and tasks in translational bioinformatics; pharmacogenomics, systems biology, and personalized medicine; and the applicability of translational bioinformatics for biomarker discovery, epigenomics, and molecular dynamics. It also discusses data integration and mining, immunoinformatics, and neuroinformatics. With broad coverage of both basic scientific and clinical applications, this book is suitable for a wide range of readers who may not be scientists but who are also interested in the practice of personalized medicine. Introduces integrative approaches in translational bioinformatics and systems biology to support the practice of personalized, precision, predictive, preventive, and participatory medicine Presents a problem-solving oriented methodology to deal with practical problems in various applications Covers both basic scientific and clinical applications in order to enhance the collaboration between researchers and clinicians Brings integrative and multidisciplinary approaches to bridge the gaps among various knowledge domains in the field
Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.
With the increasing availability of omics data and mounting evidence of the usefulness of computational approaches to tackle multi-level data problems in bioinformatics and biomedical research in this post-genomics era, computational biology has been playing an increasingly important role in paving the way as basis for patient-centric healthcare.Two such areas are: (i) implementing AI algorithms supported by biomedical data would deliver significant benefits/improvements towards the goals of precision medicine (ii) blockchain technology will enable medical doctors to securely and privately build personal healthcare records, and identify the right therapeutic treatments and predict the progression of the diseases.A follow-up in the publication of our book Computation Methods with Applications in Bioinformatics Analysis (2017), topics in this volume include: clinical bioinformatics, omics-based data analysis, Artificial Intelligence (AI), blockchain, big data analytics, drug discovery, RNA-seq analysis, tensor decomposition and Boolean network.