Boundary Element Methods for Soil-Structure Interaction

Boundary Element Methods for Soil-Structure Interaction

Author: W.S. Hall

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 429

ISBN-13: 0306483874

DOWNLOAD EBOOK

W S HALL School of Computing and Mathematics, University of Teesside, Middlesbrough, TS1 3BA UK G OLIVETO Division of Structural Engineering, Department of Civil and Environmental Engineering, University of Catania, Viale A. Doria 6, 95125 Catania, Italy Soil-Structure Interaction is a challenging multidisciplinary subject which covers several areas of Civil Engineering. Virtually every construction is connected to the ground and the interaction between the artefact and the foundation medium may affect considerably both the superstructure and the foundation soil. The Soil-Structure Interaction problem has become an important feature of Structural Engineering with the advent of massive constructions on soft soils such as nuclear power plants, concrete and earth dams. Buildings, bridges, tunnels and underground structures may also require particular attention to be given to the problems of Soil-Structure Interaction. Dynamic Soil-Structure Interaction is prominent in Earthquake Engineering problems. The complexity of the problem, due also to its multidisciplinary nature and to the fact of having to consider bounded and unbounded media of different mechanical characteristics, requires a numerical treatment for any application of engineering significance. The Boundary Element Method appears to be well suited to solve problems of Soil- Structure Interaction through its ability to discretize only the boundaries of complex and often unbounded geometries. Non-linear problems which often arise in Soil-Structure Interaction may also be treated advantageously by a judicious mix of Boundary and Finite Element discretizations.


Soil-Structure Interaction: Numerical Analysis and Modelling

Soil-Structure Interaction: Numerical Analysis and Modelling

Author: J.W. Bull

Publisher: CRC Press

Published: 2002-11-01

Total Pages: 742

ISBN-13: 1482271397

DOWNLOAD EBOOK

This book describes how a number of different methods of analysis and modelling, including the boundary element method, the finite element method, and a range of classical methods, are used to answer some of the questions associated with soil-structure interaction.


The Scaled Boundary Finite Element Method

The Scaled Boundary Finite Element Method

Author: John P. Wolf

Publisher: John Wiley & Sons

Published: 2003-03-14

Total Pages: 398

ISBN-13: 9780471486824

DOWNLOAD EBOOK

A novel computational procedure called the scaled boundary finite-element method is described which combines the advantages of the finite-element and boundary-element methods : Of the finite-element method that no fundamental solution is required and thus expanding the scope of application, for instance to anisotropic material without an increase in complexity and that singular integrals are avoided and that symmetry of the results is automatically satisfied. Of the boundary-element method that the spatial dimension is reduced by one as only the boundary is discretized with surface finite elements, reducing the data preparation and computational efforts, that the boundary conditions at infinity are satisfied exactly and that no approximation other than that of the surface finite elements on the boundary is introduced. In addition, the scaled boundary finite-element method presents appealing features of its own : an analytical solution inside the domain is achieved, permitting for instance accurate stress intensity factors to be determined directly and no spatial discretization of certain free and fixed boundaries and interfaces between different materials is required. In addition, the scaled boundary finite-element method combines the advantages of the analytical and numerical approaches. In the directions parallel to the boundary, where the behaviour is, in general, smooth, the weighted-residual approximation of finite elements applies, leading to convergence in the finite-element sense. In the third (radial) direction, the procedure is analytical, permitting e.g. stress-intensity factors to be determined directly based on their definition or the boundary conditions at infinity to be satisfied exactly. In a nutshell, the scaled boundary finite-element method is a semi-analytical fundamental-solution-less boundary-element method based on finite elements. The best of both worlds is achieved in two ways: with respect to the analytical and numerical methods and with respect to the finite-element and boundary-element methods within the numerical procedures. The book serves two goals: Part I is an elementary text, without any prerequisites, a primer, but which using a simple model problem still covers all aspects of the method and Part II presents a detailed derivation of the general case of statics, elastodynamics and diffusion.


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports

Author:

Publisher:

Published: 1987

Total Pages: 1126

ISBN-13:

DOWNLOAD EBOOK

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.


Recent Advances in Boundary Element Methods

Recent Advances in Boundary Element Methods

Author: George Manolis

Publisher: Springer Science & Business Media

Published: 2009-05-12

Total Pages: 467

ISBN-13: 1402097107

DOWNLOAD EBOOK

This volume, dedicated to Professor Dimitri Beskos, contains contributions from leading researchers in Europe, the USA, Japan and elsewhere, and addresses the needs of the computational mechanics research community in terms of timely information on boundary integral equation-based methods and techniques applied to a variety of fields. The contributors are well-known scientists, who also happen to be friends, collaborators as past students of Dimitri Beskos. Dimitri is one the BEM pioneers who started his career at the University of Minnesota in Minneapolis, USA, in the 1970s and is now with the University of Patras in Patras, Greece. The book is essentially a collection of both original and review articles on contemporary Boundary Element Methods (BEM) as well as on the newer Mesh Reduction Methods (MRM), covering a variety of research topics. Close to forty contributions compose an over-500 page volume that is rich in detail and wide in terms of breadth of coverage of the subject of integral equation formulations and solutions in both solid and fluid mechanics.


Proceedings of Fourth International Conference on Inventive Material Science Applications

Proceedings of Fourth International Conference on Inventive Material Science Applications

Author: V. Bindhu

Publisher: Springer Nature

Published: 2021-10-19

Total Pages: 802

ISBN-13: 9811643210

DOWNLOAD EBOOK

The volume is a collection of best selected research papers presented at the 4th International Conference on Inventive Material Science Applications (ICIMA 2021) organized by PPG Institute of Technology, Coimbatore, India during 14 – 15 May 2021. The book includes original research by material science researchers towards developing a compact and efficient functional elements and structures for micro, nano and optoelectronic applications. The book covers important topics like nanomaterials and devices, optoelectronics, sustainable electronic materials, nanocomposites and nanostructures, hybrid electronic materials, medical electronics, computational material science, wearable electronic devices and models, and optical/nano-sensors.