IUTAM Symposium on Recent Developments in Non-linear Oscillations of Mechanical Systems

IUTAM Symposium on Recent Developments in Non-linear Oscillations of Mechanical Systems

Author: Nguyen Van Dao

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 341

ISBN-13: 9401141509

DOWNLOAD EBOOK

This volume contains selected papers presented at the Symposium on "Recent Developments in Non-linear Oscillations of Mechanical Systems", held in Hanoi, Vietnam, from 2 - 5 March 1999. This Symposium was initiated and sponsored by the International Union of Theoretical and Applied Mechanics (lUI AM) and organised in conjunction with Vietnam National University, Hanoi. Ihe purpose of the Symposium was to bring together scientists active in different fields of oscillations with the aim to review the recent progress in theory of oscillations and engineering applications and to outline the prospects in its further achievements to then co-ordinate and direct research in this field to further co-operation between scientists and various scientific institutions. An International Scientific Committee was appointed by the Bureau of IUI AM with the following members: Nguyen Van Dao (Vietnam, Co-Chairman) E.J. Kreuzer (Germany, Co-Chairman) D.H. van Campen (The Netherlands) F.L. Chernousko (Russia) A.H. Nayfeh (U.S.A) Nguyen Xuan Hung (Vietnam) W.O. Schiehlen (Germany) J.M.T. Thompson (U.K) Y. Veda (Japan). This Committee selected the participants to be invited and the papers to be presented at the Symposium. As a result of this procedure, 52 active scientists from 16 countries responded to the invitation, and 42 papers were presented in lecture and poster discussion sessions.


Asymptotic Methods for Investigating Quasiwave Equations of Hyperbolic Type

Asymptotic Methods for Investigating Quasiwave Equations of Hyperbolic Type

Author: Yuri A. Mitropolsky

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 223

ISBN-13: 9401157529

DOWNLOAD EBOOK

The theory of partial differential equations is a wide and rapidly developing branch of contemporary mathematics. Problems related to partial differential equations of order higher than one are so diverse that a general theory can hardly be built up. There are several essentially different kinds of differential equations called elliptic, hyperbolic, and parabolic. Regarding the construction of solutions of Cauchy, mixed and boundary value problems, each kind of equation exhibits entirely different properties. Cauchy problems for hyperbolic equations and systems with variable coefficients have been studied in classical works of Petrovskii, Leret, Courant, Gording. Mixed problems for hyperbolic equations were considered by Vishik, Ladyzhenskaya, and that for general two dimensional equations were investigated by Bitsadze, Vishik, Gol'dberg, Ladyzhenskaya, Myshkis, and others. In last decade the theory of solvability on the whole of boundary value problems for nonlinear differential equations has received intensive development. Significant results for nonlinear elliptic and parabolic equations of second order were obtained in works of Gvazava, Ladyzhenskaya, Nakhushev, Oleinik, Skripnik, and others. Concerning the solvability in general of nonlinear hyperbolic equations, which are connected to the theory of local and nonlocal boundary value problems for hyperbolic equations, there are only partial results obtained by Bronshtein, Pokhozhev, Nakhushev.


Asymptotic Methods for Engineers

Asymptotic Methods for Engineers

Author: Igor V. Andrianov

Publisher: CRC Press

Published: 2024-05-16

Total Pages: 265

ISBN-13: 1040032710

DOWNLOAD EBOOK

Asymptotic Methods for Engineers is based on the authors’ many years of practical experience in the application of asymptotic methods to solve engineering problems. This book is devoted to modern asymptotic methods (AM), which is widely used in engineering, applied sciences, physics, and applied mathematics. Avoiding complex formal calculations and justifications, the book’s main goal is to describe the main ideas and algorithms. Moreover, not only is there a presentation of the main AM, but there is also a focus on demonstrating their unity and inseparable connection with the methods of summation and asymptotic interpolation. The book will be useful for students and researchers from applied mathematics and physics and of interest to doctoral and graduate students, university and industry professors from various branches of engineering (mechanical, civil, electro-mechanical, etc.).


Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions

Author: Igor Andrianov

Publisher: John Wiley & Sons

Published: 2014-02-06

Total Pages: 281

ISBN-13: 111872514X

DOWNLOAD EBOOK

Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions comprehensively covers the theoretical background of asymptotic approaches and their use in solving mechanical engineering-oriented problems of structural members, primarily plates (statics and dynamics) with mixed boundary conditions. The first part of this book introduces the theory and application of asymptotic methods and includes a series of approaches that have been omitted or not rigorously treated in the existing literature. These lesser known approaches include the method of summation and construction of the asymptotically equivalent functions, methods of small and large delta, and the homotopy perturbations method. The second part of the book contains original results devoted to the solution of the mixed problems of the theory of plates, including statics, dynamics and stability of the studied objects. In addition, the applicability of the approaches presented to other related linear or nonlinear problems is addressed. Key features: • Includes analytical solving of mixed boundary value problems • Introduces modern asymptotic and summation procedures • Presents asymptotic approaches for nonlinear dynamics of rods, beams and plates • Covers statics, dynamics and stability of plates with mixed boundary conditions • Explains links between the Adomian and homotopy perturbation approaches Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions is a comprehensive reference for researchers and practitioners working in the field of Mechanics of Solids and Mechanical Engineering, and is also a valuable resource for graduate and postgraduate students from Civil and Mechanical Engineering.


Computational Methods and Mathematical Modeling in Cyberphysics and Engineering Applications 1

Computational Methods and Mathematical Modeling in Cyberphysics and Engineering Applications 1

Author: Dmitri Koroliouk

Publisher: John Wiley & Sons

Published: 2024-04-16

Total Pages: 452

ISBN-13: 1394284330

DOWNLOAD EBOOK

Mathematical methods in engineering are characterized by a wide range of techniques for approaching various problems. Moreover, completely different analysis techniques can be applied to the same problem, which is justified by the difference in specific applications. Therefore, the study of the analyses and solutions of specific problems leads the researcher to generate their own techniques for the analysis of similar problems continuously arising in the process of technical development. Computational Methods and Mathematical Modeling in Cyberphysics and Engineering Applications contains solutions to specific problems in current areas of computational engineering and cyberphysics.


Hierarchical Methods

Hierarchical Methods

Author: V. Kulish

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 380

ISBN-13: 0306480611

DOWNLOAD EBOOK

Everybody is current in a world surrounded by computer. Computers determine our professional activity and penetrate increasingly deeper into our everyday life. Therein we also need increasingly refined c- puter technology. Sometimes we think that the next generation of c- puter will satisfy all our dreams, giving us hope that most of our urgent problems will be solved very soon. However, the future comes and il- sions dissipate. This phenomenon occurs and vanishes sporadically, and, possibly, is a fundamental law of our life. Experience shows that indeed ‘systematically remaining’ problems are mainly of a complex tech- logical nature (the creation of new generation of especially perfect - croschemes, elements of memory, etc. ). But let us note that amongst these problems there are always ones solved by our purely intellectual efforts alone. Progress in this direction does not require the invention of any ‘superchip’ or other similar elements. It is important to note that the results obtained in this way very often turn out to be more significant than the ‘fruits’ of relevant technological progress. The hierarchical asymptotic analytical–numerical methods can be - garded as results of such ‘purely intellectual efforts’. Their application allows us to simplify essentially computer calculational procedures and, consequently, to reduce the calculational time required. It is obvious that this circumstance is very attractive to any computer user.