Advances in Cancer Research, Volume 150, the latest release in this ongoing series, covers the relationship(s) between autophagy and senescence, how they are defined, and the influence of these cellular responses on tumor dormancy and disease recurrence. Specific sections in this new release include Autophagy and senescence, converging roles in pathophysiology, Cellular senescence and tumor promotion: role of the unfolded protein response, autophagy and senescence in cancer stem cells, Targeting the stress support network regulated by autophagy and senescence for cancer treatment, Autophagy and PTEN in DNA damage-induced senescence, mTOR as a senescence manipulation target: A forked road, and more. - Addresses the relationship between autophagy and senescence in cancer therapy - Covers autophagy and senescence in tumor dormancy - Explores autophagy and senescence in disease recurrence
With the explosion of information on autophagy in cancer, this is an opportune time to speed the efforts to translate our current knowledge about autophagy regulation into better understanding of its role in cancer. This book will cover the latest advances in this area from the basics, such as the molecular machinery for autophagy induction and regulation, up to the current areas of interest such as modulation of autophagy and drug discovery for cancer prevention and treatment. The text will include an explanation on how autophagy can function in both oncogenesis and tumor suppression and a description of its function in tumor development and tumor suppression through its roles in cell survival, cell death, cell growth as well as its influences on inflammation, immunity, DNA damage, oxidative stress, tumor microenvironment, etc. The remaining chapters will cover topics on autophagy and cancer therapy. These pages will serve as a description on how the pro-survival function of autophagy may help cancer cells resist chemotherapy and radiation treatment as well as how the pro-death functions of autophagy may enhance cell death in response to cancer therapy, and how to target autophagy for cancer prevention and therapy − what to target and how to target it.
This book offers comprehensive information on the new and rapidly evolving science of identifying and targeting senescent cells, and on the exciting prospect of new diagnostic and therapeutic opportunities for stopping, and even reversing, the progression of disease and the deterioration of the human body due to ageing. According to recent United Nations data, by 2050 one in six people worldwide will be older than age 65, with peaks rising to one in four people in Europe and North America. Remarkably, the number of persons aged 80 years or older is expected to triple, from 143 million in 2019 to 426 million in 2050. First documented in the 1960s, the concept of cellular senescence as an underlying cause of ageing has been established in the course of the last decade. Using genetically engineered mouse models, researchers have demonstrated that the selective elimination of senescent cells can block and even reverse a number of age-related dysfunctions and pathologies, promoting both better health and longer life in the elderly. These include cardiovascular diseases; neurological disorders; type 1 and type 2 diabetes; inflammatory diseases; fibrosis; geriatric syndromes; chronic diseases resulting in organ dysfunction; the integrity of the musculoskeletal system; and cancer. Some senolytic agents have already progressed into trials. These include UBX0101 for the treatment of osteoarthritis (now in phase II), a cocktail of dasatinib and quercetin for the management of idiopathic pulmonary fibrosis and chronic kidney disease, and ABT-263 in combination with senescence-inducing chemotherapies for the treatment of advanced solid tumours. In addition, the book discusses pathways to early phase clinical trials and translational approaches in medicine and ageing, highlighting new opportunities as well as current limitations, challenges and alternatives. Given its scope, it will benefit a broad audience of advanced educators, researchers, graduate students and practitioners.
Telomerase, an enzyme that maintains telomeres and endows eukaryotic cells with immortality, was first discovered in tetrahymena in 1985. In 1990s, it was proven that this enzyme also plays a key role in the infinite proliferation of human cancer cells. Now telomere and telomerase are widely accepted as important factors involved in cancer biology, and as promising diagnostic tools and therapeutic targets. Recently, role of telomerase in “cancer stem cells” has become another attractive story. Until now, there are several good books on telomere and telomerase focusing on biology in ciliates, yeasts, and mouse or basic sciences in human, providing basic scientists or students with updated knowledge.
Tissue Repair, Contraction and the Myofibroblast summarizes the latest findings concerning the biology of the myofibroblast, a cell involved in the evolution and contraction of granulation tissue and of fibrotic changes. Coverage shows that the myofibroblast is responsible for the development of hypertrophic scars, pulmonary and renal fibrosis and bronchial asthma. Reviews the cell biology and pathology of the myofibroblast as well as mechanisms of fibrosis evolution in many organs and tissues.
This book is devoted to innovative medicine, comprising the proceedings of the Uehara Memorial Foundation Symposium 2014. It remains extremely rare for the findings of basic research to be developed into clinical applications, and it takes a long time for the process to be achieved. The task of advancing the development of basic research into clinical reality lies with translational science, yet the field seems to struggle to find a way to move forward. To create innovative medical technology, many steps need to be taken: development and analysis of optimal animal models of human diseases, elucidation of genomic and epidemiological data, and establishment of “proof of concept”. There is also considerable demand for progress in drug research, new surgical procedures, and new clinical devices and equipment. While the original research target may be rare diseases, it is also important to apply those findings more broadly to common diseases. The book covers a wide range of topics and is organized into three complementary parts. The first part is basic research for innovative medicine, the second is translational research for innovative medicine, and the third is new technology for innovative medicine. This book helps to understand innovative medicine and to make progress in its realization.
Metabolic Syndrome: From Mechanisms to Interventions covers all aspects of this complex and multifactorial disease, providing a cutting-edge understanding of the problem of MetS, with a particular focus on its prevention and clinical management. The book discusses practical implementable approaches to its reversal in clinical practice, encompassing the entire spectrum of MetS, from molecular understanding to clinical therapeutics and prevention. This book is a valuable resource for clinicians in multiple specialties, including endocrinologists, diabetologists, hepatologists, gynecologists and researchers in related fields who need a deep understanding of the full range of scientific and clinical aspects of metabolic syndrome. - Presents a holistic, preventative strategy involving each and every aspect of metabolic syndrome, from pathophysiologic to clinical management - Discusses recent research on the role of inflammation, adipokines and myokines in metabolic syndrome - Includes cutting-edge information on the impact of bariatric surgery and role of gut microbiota in MetS - Provides flowcharts and diagrams to simplify pathophysiologic aspects and their association between risk factors