Whether you are a novice to ZooKeeper or already have some experience, you will be able to master the concepts of ZooKeeper and its usage with ease. This book assumes you to have some prior knowledge of distributed systems and high-level programming knowledge of C, Java, or Python, but no experience with Apache ZooKeeper is required.
If you are a system or application developer interested in learning how to solve practical problems using the Hadoop framework, then this book is ideal for you. This book is also meant for Hadoop professionals who want to find solutions to the different challenges they come across in their Hadoop projects.
Building distributed applications is difficult enough without having to coordinate the actions that make them work. This practical guide shows how Apache ZooKeeper helps you manage distributed systems, so you can focus mainly on application logic. Even with ZooKeeper, implementing coordination tasks is not trivial, but this book provides good practices to give you a head start, and points out caveats that developers and administrators alike need to watch for along the way. In three separate sections, ZooKeeper contributors Flavio Junqueira and Benjamin Reed introduce the principles of distributed systems, provide ZooKeeper programming techniques, and include the information you need to administer this service. Learn how ZooKeeper solves common coordination tasks Explore the ZooKeeper API’s Java and C implementations and how they differ Use methods to track and react to ZooKeeper state changes Handle failures of the network, application processes, and ZooKeeper itself Learn about ZooKeeper’s trickier aspects dealing with concurrency, ordering, and configuration Use the Curator high-level interface for connection management Become familiar with ZooKeeper internals and administration tools
If you have a working knowledge of Hadoop 1.x but want to start afresh with YARN, this book is ideal for you. You will be able to install and administer a YARN cluster and also discover the configuration settings to fine-tune your cluster both in terms of performance and scalability. This book will help you develop, deploy, and run multiple applications/frameworks on the same shared YARN cluster.
Unleash the power of automation by mastering network programming fundamentals using Python and Go best practices Purchase of the print or Kindle book includes a free PDF eBook Key Features Understand the fundamentals of network programming and automation Learn tips and tricks to transition from traditional networking to automated networks Solve everyday problems with automation frameworks in Python and Go Book Description Network programming and automation, unlike traditional networking, is a modern-day skill that helps in configuring, managing, and operating networks and network devices. This book will guide you with important information, helping you set up and start working with network programming and automation. With Network Programming and Automation Essentials, you'll learn the basics of networking in brief. You'll explore the network programming and automation ecosystem, learn about the leading programmable interfaces, and go through the protocols, tools, techniques, and technologies associated with network programming. You'll also master network automation using Python and Go with hands-on labs and real network emulation in this comprehensive guide. By the end of this book, you'll be well equipped to program and automate networks efficiently. What you will learn Understand the foundation of network programming Explore software-defined networks and related families Recognize the differences between Go and Python through comparison Leverage the best practices of Go and Python Create your own network automation testing framework using network emulation Acquire skills in using automation frameworks and strategies for automation Who this book is for This book is for network architects, network engineers, and software professionals looking to integrate programming into networks. Network engineers following traditional techniques can use this book to transition into modern-day network automation and programming. Familiarity with networking concepts is a prerequisite.
This book takes you on a fantastic journey to discover the attributes of big data using Apache Hive. Key Features Grasp the skills needed to write efficient Hive queries to analyze the Big Data Discover how Hive can coexist and work with other tools within the Hadoop ecosystem Uses practical, example-oriented scenarios to cover all the newly released features of Apache Hive 2.3.3 Book Description In this book, we prepare you for your journey into big data by frstly introducing you to backgrounds in the big data domain, alongwith the process of setting up and getting familiar with your Hive working environment. Next, the book guides you through discovering and transforming the values of big data with the help of examples. It also hones your skills in using the Hive language in an effcient manner. Toward the end, the book focuses on advanced topics, such as performance, security, and extensions in Hive, which will guide you on exciting adventures on this worthwhile big data journey. By the end of the book, you will be familiar with Hive and able to work effeciently to find solutions to big data problems What you will learn Create and set up the Hive environment Discover how to use Hive's definition language to describe data Discover interesting data by joining and filtering datasets in Hive Transform data by using Hive sorting, ordering, and functions Aggregate and sample data in different ways Boost Hive query performance and enhance data security in Hive Customize Hive to your needs by using user-defined functions and integrate it with other tools Who this book is for If you are a data analyst, developer, or simply someone who wants to quickly get started with Hive to explore and analyze Big Data in Hadoop, this is the book for you. Since Hive is an SQL-like language, some previous experience with SQL will be useful to get the most out of this book.
JSON is an established and standard format used to exchange data. This book shows how JSON plays different roles in full web development through examples. By the end of this book, you'll have a new perspective on providing solutions for your applications and handling their complexities.
Easy, hands-on recipes to help you understand Hive and its integration with frameworks that are used widely in today's big data world About This Book Grasp a complete reference of different Hive topics. Get to know the latest recipes in development in Hive including CRUD operations Understand Hive internals and integration of Hive with different frameworks used in today's world. Who This Book Is For The book is intended for those who want to start in Hive or who have basic understanding of Hive framework. Prior knowledge of basic SQL command is also required What You Will Learn Learn different features and offering on the latest Hive Understand the working and structure of the Hive internals Get an insight on the latest development in Hive framework Grasp the concepts of Hive Data Model Master the key concepts like Partition, Buckets and Statistics Know how to integrate Hive with other frameworks such as Spark, Accumulo, etc In Detail Hive was developed by Facebook and later open sourced in Apache community. Hive provides SQL like interface to run queries on Big Data frameworks. Hive provides SQL like syntax also called as HiveQL that includes all SQL capabilities like analytical functions which are the need of the hour in today's Big Data world. This book provides you easy installation steps with different types of metastores supported by Hive. This book has simple and easy to learn recipes for configuring Hive clients and services. You would also learn different Hive optimizations including Partitions and Bucketing. The book also covers the source code explanation of latest Hive version. Hive Query Language is being used by other frameworks including spark. Towards the end you will cover integration of Hive with these frameworks. Style and approach Starting with the basics and covering the core concepts with the practical usage, this book is a complete guide to learn and explore Hive offerings.
The growth of a global digital economy has enabled rapid communication, instantaneous movement of funds, and availability of vast amounts of information. With this come challenges such as the vulnerability of digitalized sociotechnological systems (STSs) to destructive events (earthquakes, disease events, terrorist attacks). Similar issues arise for disruptions to complex linked natural and social systems (from changing climates, evolving urban environments, etc.). This book explores new approaches to the resilience of sociotechnological and natural-social systems in a digital world of big data, extraordinary computing capacity, and rapidly developing methods of Artificial Intelligence. Most of the book’s papers were presented at the Workshop on Big Data and Systems Analysis held at the International Institute for Applied Systems Analysis in Laxenburg, Austria in February, 2020. Their authors are associated with the Task Group “Advanced mathematical tools for data-driven applied systems analysis” created and sponsored by CODATA in November, 2018. The world-wide COVID-19 pandemic illustrates the vulnerability of our healthcare systems, supply chains, and social infrastructure, and confronts our notions of what makes a system resilient. We have found that use of AI tools can lead to problems when unexpected events occur. On the other hand, the vast amounts of data available from sensors, satellite images, social media, etc. can also be used to make modern systems more resilient. Papers in the book explore disruptions of complex networks and algorithms that minimize departure from a previous state after a disruption; introduce a multigrammatical framework for the technological and resource bases of today’s large-scale industrial systems and the transformations resulting from disruptive events; and explain how robotics can enhance pre-emptive measures or post-disaster responses to increase resiliency. Other papers explore current directions in data processing and handling and principles of FAIRness in data; how the availability of large amounts of data can aid in the development of resilient STSs and challenges to overcome in doing so. The book also addresses interactions between humans and built environments, focusing on how AI can inform today’s smart and connected buildings and make them resilient, and how AI tools can increase resilience to misinformation and its dissemination.
Although AI has incredible potential, it has three weak links: 1. Blackbox, lack of explainability2. Silos, slews of siloed systems across the AI ecosystem3. Low-performance, most of ML/DL based AI systems are SLOW.Fixing these problems will pave the road to strong and effective AI. Graph databases, particularly high-performance graph database or graph computing, should allow this to happen.The Essential Criteria of Graph Databases simply broadens the horizon of graph applications. The book collects several truly innovative graph applications in asset-liability and liquidity risk management, which hopefully will spark readers' interest in further broaden the reach and applicable domains of graph systems. - Presents updates on the essential criteria of graph database(s) and how they are quite different from traditional relational database or other types of NoSQL DBMS or any of those big-data frameworks (i.e., Hadoop, Spark, etc.) - Clearly points out the key criteria that readers should pay attention to - Teaches users how to avoid common mistakes and how to get hands-on with system architecture design, benchmarking or selection of an appropriate graph platform/vendor-system