Journal of the National Cancer Institute

Journal of the National Cancer Institute

Author:

Publisher:

Published: 2000

Total Pages: 1248

ISBN-13:

DOWNLOAD EBOOK

Each issue is packed with extensive news about important cancer related science, policy, politics and people. Plus, there are editorials and reviews by experts in the field, book reviews, and commentary on timely topics.


Catalysis and Zeolites

Catalysis and Zeolites

Author: Jens Weitkamp

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 582

ISBN-13: 3662037645

DOWNLOAD EBOOK

Zeolites occur in nature and have been known for almost 250 years as alumino silicate minerals. Examples are clinoptilolite, mordenite, offretite, ferrierite, erionite and chabazite. Today, most of these and many other zeolites are of great interest in heterogeneous catalysis, yet their naturally occurring forms are of limited value as catalysts because nature has not optimized their properties for catalytic applications and the naturally occurring zeolites almost always contain undesired impurity phases. It was only with the advent of synthetic zeolites in the period from about 1948 to 1959 (thanks to the pioneering work of R. M. Barrer and R. M. Milton) that this class of porous materials began to playa role in catalysis. A landmark event was the introduction of synthetic faujasites (zeolite X at first, zeolite Y slightly later) as catalysts in fluid catalytic cracking (FCC) of heavy petroleum distillates in 1962, one of the most important chemical processes with a worldwide capacity of the order of 500 million t/a. Compared to the previously used amorphous silica-alumina catalysts, the zeolites were not only orders of magnitude more active, which enabled drastic process engineering improvements to be made, but they also brought about a significant increase in the yield of the target product, viz. motor gasoline. With the huge FCC capacity worldwide, the added value of this yield enhancement is of the order of 10 billion US $ per year.


Wave Propagation in Drilling, Well Logging and Reservoir Applications

Wave Propagation in Drilling, Well Logging and Reservoir Applications

Author: Wilson C. Chin

Publisher: John Wiley & Sons

Published: 2014-09-19

Total Pages: 374

ISBN-13: 1118925904

DOWNLOAD EBOOK

Wave propagation is central to all areas of petroleum engineering, e.g., drilling vibrations, MWD mud pulse telemetry, swab-surge, geophysical ray tracing, ocean and current interactions, electromagnetic wave and sonic applications in the borehole, but rarely treated rigorously or described in truly scientific terms, even for a single discipline. Wilson Chin, an MIT and Caltech educated scientist who has consulted internationally, provides an integrated, comprehensive, yet readable exposition covering all of the cited topics, offering insights, algorithms and validated methods never before published. A must on every petroleum engineering bookshelf! In particular, the book: Delivers drillstring vibrations models coupling axial, torsional and lateral motions that predict rate-of-penetration, bit bounce and stick-slip as they depend on rock-bit interaction and bottomhole assembly properties, Explains why catastrophic lateral vibrations at the neutral point cannot be observed from the surface even in vertical wells, but providing a proven method to avoid them, Demonstrates why Fermat's "principle of least time" (used in geophysics) applies to non-dissipative media only, but using the "kinematic wave theory" developed at MIT, derives powerful methods applicable to general attenuative inhomogeneous media, Develops new approaches to mud acoustics and applying them to MWD telemetry modeling and strong transients in modern swab-surge applicagtions, Derives new algorithms for borehole geophysics interpretation, e.g., Rh and Rv in electromagnetic wave and permeability in Stoneley waveform analysis, and Outlines many more applications, e.g., wave loadings on offshore platforms, classical problems in wave propagation, and extensions to modern kinematic wave theory. These disciplines, important to all field-oriented activities, are not treated as finite element applications that are simply gridded, "number-crunched" and displayed, but as scientific disciplines deserving of clear explanation. General results are carefully motivated, derived and applied to real-world problems, with results demonstrating the importance and predictive capabilities of the new methods.


Reservoir Formation Damage

Reservoir Formation Damage

Author: Faruk Civan

Publisher: Gulf Professional Publishing

Published: 2015-09-20

Total Pages: 1044

ISBN-13: 0128019107

DOWNLOAD EBOOK

Reservoir Formation Damage, Third Edition, provides the latest information on the economic problems that can occur during various phases of oil and gas recovery from subsurface reservoirs, including production, drilling, hydraulic fracturing, and workover operations. The text helps readers better understand the processes causing formation damage and the factors that can lead to reduced flow efficiency in near-wellbore formation during the various phases of oil and gas production. The third edition in the series provides the most all-encompassing volume to date, adding new material on conformance and water control, hydraulic fracturing, special procedures for unconventional reservoirs, field applications design, and cost assessment for damage control measures and strategies. - Understand relevant formation damage processes by laboratory and field testing - Develop theories and mathematical expressions for description of the fundamental mechanisms and processes - Predict and simulate the consequences and scenarios of the various types of formation damage processes encountered in petroleum reservoirs - Develop methodologies and optimal strategies for formation damage control and remediation