A planar or two-dimensional (2D) mechanism is the combination of two or more machine elements that are designed to convey a force or motion across parallel planes. For any mechanical engineer, young or old, an understanding of planar mechanism design is fundamental. Mechanical components and complex machines, such as engines or robots, are often designed and conceptualised in 2D before being extended into 3D. Designed to encourage a clear understanding of the nature and design of planar mechanisms, this book favours a frank and straightforward approach to teaching the basics of planar mechanism design and the theory of machines with fully worked examples throughout. Key Features: Provides simple instruction in the design and analysis of planar mechanisms, enabling the student to easily navigate the text and find the desired material Covers topics of fundamental importance to mechanical engineering, from planar mechanism kinematics, 2D linkage analyses and 2D linkage design to the fundamentals of spur gears and cam design Shows numerous example solutions using EES (Engineering Equation Solver) and MATLAB software, with appendices dedicated to explaining the use of both computer tools Follows end-of-chapter problems with clearly detailed solutions
Analytical Elements of Mechanics, Volume 1, is the first of two volumes intended for use in courses in classical mechanics. The books aim to provide students and teachers with a text consistent in content and format with the author's ideas regarding the subject matter and teaching of mechanics, and to disseminate these ideas. The book opens with a detailed exposition of vector algebra, and no prior knowledge of this subject is required. This is followed by a chapter on the topic of mass centers, which is presented as a logical extension of concepts introduced in connection with centroids. A theory of moments and couples is constructed without reference to forces, these being mentioned only in illustrative examples. This is done because it eventually becomes necessary to apply the theory to systems of vectors which are not forces, such as momenta and impulses. Equilibrium is discussed in the final chapter, preceded by extended examination of the concept of force.
Advanced Theory of Constraint and Motion Analysis for Robot Mechanisms provides a complete analytical approach to the invention of new robot mechanisms and the analysis of existing designs based on a unified mathematical description of the kinematic and geometric constraints of mechanisms. Beginning with a high level introduction to mechanisms and components, the book moves on to present a new analytical theory of terminal constraints for use in the development of new spatial mechanisms and structures. It clearly describes the application of screw theory to kinematic problems and provides tools that students, engineers and researchers can use for investigation of critical factors such as workspace, dexterity and singularity.
Machine Design Analysis with MATLAB is a highly practical guide to the fundamental principles of machine design which covers the static and dynamic behavior of engineering structures and components. MATLAB has transformed the way calculations are made for engineering problems by computationally generating analytical calculations, as well as providing numerical calculations. Using step-by-step, real world example problems, this book demonstrates how you can use symbolic and numerical MATLAB as a tool to solve problems in machine design. This book provides a thorough, rigorous presentation of machine design, augmented with proven learning techniques which can be used by students and practicing engineers alike.
Advanced Theory of Constraint and Motion Analysis for Robot Mechanisms provides a complete analytical approach to the invention of new robot mechanisms and the analysis of existing designs based on a unified mathematical description of the kinematic and geometric constraints of mechanisms. Beginning with a high level introduction to mechanisms and components, the book moves on to present a new analytical theory of terminal constraints for use in the development of new spatial mechanisms and structures. It clearly describes the application of screw theory to kinematic problems and provides tools that students, engineers and researchers can use for investigation of critical factors such as workspace, dexterity and singularity. - Combines constraint and free motion analysis and design, offering a new approach to robot mechanism innovation and improvement - Clearly describes the use of screw theory in robot kinematic analysis, allowing for concise representation of motion and static forces when compared to conventional analysis methods - Includes worked examples to translate theory into practice and demonstrate the application of new analytical methods to critical robotics problems
Provides the techniques necessary to study the motion of machines, and emphasizes the application of kinematic theories to real-world machines consistent with the philosophy of engineering and technology programs. This book intents to bridge the gap between a theoretical study of kinematics and the application to practical mechanism.
Kinematic Chains and Machine Components Design covers a broad spectrum of critical machine design topics and helps the reader understand the fundamentals and apply the technologies necessary for successful mechanical design and execution. The inclusion of examples and instructive problems present the reader with a teachable computer-oriented text. Useful analytical techniques provide the practitioner and student with powerful tools for the design of kinematic chains and machine components.Kinematic Chains and Machine Components Design serves as a on-volume reference for engineers and students in mechanical engineering with applications for all engineers working in the fields of machine design and robotics. The book contains the fundamental laws and theories of science basic to mechanical engineering including mechanisms, robots and machine components to provide the reader with a thorough understanding of mechanical design. - Combines theories of kinematics and behavior of mechanisms with the practical design of robots, machine parts, and machine systems into one comprehensive mechanical design book - Offers the method of contour equations for the kinematic analysis of mechanicsl systems and dynamic force analysis - Mathematica programs and packages for the analysis of mechanical systems
This book deals with the simulation of the mechanical behavior of engineering structures, mechanisms and components. It presents a set of strategies and tools for formulating the mathematical equations and the methods of solving them using MATLAB. For the same mechanical systems, it also shows how to obtain solutions using a different approaches. It then compares the results obtained with the two methods. By combining fundamentals of kinematics and dynamics of mechanisms with applications and different solutions in MATLAB of problems related to gears, cams, and multilink mechanisms, and by presenting the concepts in an accessible manner, this book is intended to assist advanced undergraduate and mechanical engineering graduate students in solving various kinds of dynamical problems by using methods in MATLAB. It also offers a comprehensive, practice-oriented guide to mechanical engineers dealing with kinematics and dynamics of several mechanical systems.
Classical and Modern Approaches in the Theory of Mechanisms is a study of mechanisms in the broadest sense, covering the theoretical background of mechanisms, their structures and components, the planar and spatial analysis of mechanisms, motion transmission, and technical approaches to kinematics, mechanical systems, and machine dynamics. In addition to classical approaches, the book presents two new methods: the analytic-assisted method using Turbo Pascal calculation programs, and the graphic-assisted method, outlining the steps required for the development of graphic constructions using AutoCAD; the applications of these methods are illustrated with examples. Aimed at students of mechanical engineering, and engineers designing and developing mechanisms in their own fields, this book provides a useful overview of classical theories, and modern approaches to the practical and creative application of mechanisms, in seeking solutions to increasingly complex problems.