Analytical Efficiency Evaluation of Modular Multilevel Converter (MMC) for High Voltage Direct Current System (HVDC)

Analytical Efficiency Evaluation of Modular Multilevel Converter (MMC) for High Voltage Direct Current System (HVDC)

Author: Ehtasham Mustafa

Publisher: GRIN Verlag

Published: 2016-02-25

Total Pages: 130

ISBN-13: 366816052X

DOWNLOAD EBOOK

Master's Thesis from the year 2014 in the subject Electrotechnology, University of Peshawar (University of Engineering and Technology, Peshawar, Pakistan), course: High Voltage Direct Current, language: English, abstract: Modular Multilevel Converter (MMC) has become the most concerned converter topology in the High Voltage Direct Current (HVDC) transmission system, in recent times. The low switching frequency, low converter losses and flexible control made it most attractive topology. It is important to make a research on the loss calculation method of MMC and state formulae for the losses as it is a vital step during the design stage of the MMC based HVDC system. In this research work, the structure of MMC based HVDC system is discussed. Three sub module topologies’; half bridge, full bridge and clamp double sub module, are discussed. A method based on the average and root mean square (RMS) values of the current passing through the sub module is discussed. The conversion losses in the switching devices of the sub modules are calculated using the method. A cases study is taken into consideration then with certain parameters. Using these parameters a MATLAB program is developed. With the help of the program the losses and efficiency curves for each switching device by taking each sub module separately are obtained respectively. A comparison of the losses and efficiency of each sub module is also discussed. At the end those factors which effect the losses and efficiency of the sub module are discussed along with the certain aspects for the directions of future work.


Modular Multilevel Converters

Modular Multilevel Converters

Author: Sixing Du

Publisher: John Wiley & Sons

Published: 2018-02-22

Total Pages: 386

ISBN-13: 1119367239

DOWNLOAD EBOOK

An invaluable academic reference for the area of high-power converters, covering all the latest developments in the field High-power multilevel converters are well known in industry and academia as one of the preferred choices for efficient power conversion. Over the past decade, several power converters have been developed and commercialized in the form of standard and customized products that power a wide range of industrial applications. Currently, the modular multilevel converter is a fast-growing technology and has received wide acceptance from both industry and academia. Providing adequate technical background for graduate- and undergraduate-level teaching, this book includes a comprehensive analysis of the conventional and advanced modular multilevel converters employed in motor drives, HVDC systems, and power quality improvement. Modular Multilevel Converters: Analysis, Control, and Applications provides an overview of high-power converters, reference frame theory, classical control methods, pulse width modulation schemes, advanced model predictive control methods, modeling of ac drives, advanced drive control schemes, modeling and control of HVDC systems, active and reactive power control, power quality problems, reactive power, harmonics and unbalance compensation, modeling and control of static synchronous compensators (STATCOM) and unified power quality compensators. Furthermore, this book: Explores technical challenges, modeling, and control of various modular multilevel converters in a wide range of applications such as transformer and transformerless motor drives, high voltage direct current transmission systems, and power quality improvement Reflects the latest developments in high-power converters in medium-voltage motor drive systems Offers design guidance with tables, charts graphs, and MATLAB simulations Modular Multilevel Converters: Analysis, Control, and Applications is a valuable reference book for academic researchers, practicing engineers, and other professionals in the field of high power converters. It also serves well as a textbook for graduate-level students.


Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems

Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems

Author: Kamran Sharifabadi

Publisher: John Wiley & Sons

Published: 2016-08-22

Total Pages: 415

ISBN-13: 1118851528

DOWNLOAD EBOOK

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission. Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids. Key features: Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland. Comprehensive explanation of MMC application in HVDC and MTDC transmission technology. Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore. Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals. A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website. This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.


High Voltage Direct Current Transmission

High Voltage Direct Current Transmission

Author: Dragan Jovcic

Publisher: John Wiley & Sons

Published: 2019-07-01

Total Pages: 696

ISBN-13: 1119566614

DOWNLOAD EBOOK

Presents the latest developments in switchgear and DC/DC converters for DC grids, and includes substantially expanded material on MMC HVDC This newly updated edition covers all HVDC transmission technologies including Line Commutated Converter (LCC) HVDC; Voltage Source Converter (VSC) HVDC, and the latest VSC HVDC based on Modular Multilevel Converters (MMC), as well as the principles of building DC transmission grids. Featuring new material throughout, High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition offers several new chapters/sections including one on the newest MMC converters. It also provides extended coverage of switchgear, DC grid protection and DC/DC converters following the latest developments on the market and in research projects. All three HVDC technologies are studied in a wide range of topics, including: the basic converter operating principles; calculation of losses; system modelling, including dynamic modelling; system control; HVDC protection, including AC and DC fault studies; and integration with AC systems and fundamental frequency analysis. The text includes: A chapter dedicated to hybrid and mechanical DC circuit breakers Half bridge and full bridge MMC: modelling, control, start-up and fault management A chapter dedicated to unbalanced operation and control of MMC HVDC The advancement of protection methods for DC grids Wideband and high-order modeling of DC cables Novel treatment of topics not found in similar books, including SimPowerSystems models and examples for all HVDC topologies hosted by the 1st edition companion site. High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition serves as an ideal textbook for a graduate-level course or a professional development course.


Multilevel Converters: Analysis, Modulation, Topologies, and Applications

Multilevel Converters: Analysis, Modulation, Topologies, and Applications

Author: Gabriele Grandi

Publisher: MDPI

Published: 2019-10-14

Total Pages: 548

ISBN-13: 3039214810

DOWNLOAD EBOOK

This book is a collection of scientific papers concerning multilevel inverters examined from different points of view. Many applications are considered, such as renewable energy interface, power conditioning systems, electric drives, and chargers for electric vehicles. Different topologies have been examined in both new configurations and well-established structures, introducing novel and particular modulation strategies, and examining the effect of modulation techniques on voltage and current harmonics and the total harmonic distortion.


Voltage-Sourced Converters in Power Systems

Voltage-Sourced Converters in Power Systems

Author: Amirnaser Yazdani

Publisher: John Wiley & Sons

Published: 2010-03-25

Total Pages: 473

ISBN-13: 0470551569

DOWNLOAD EBOOK

Presents Fundamentals of Modeling, Analysis, and Control of Electric Power Converters for Power System Applications Electronic (static) power conversion has gained widespread acceptance in power systems applications; electronic power converters are increasingly employed for power conversion and conditioning, compensation, and active filtering. This book presents the fundamentals for analysis and control of a specific class of high-power electronic converters—the three-phase voltage-sourced converter (VSC). Voltage-Sourced Converters in Power Systems provides a necessary and unprecedented link between the principles of operation and the applications of voltage-sourced converters. The book: Describes various functions that the VSC can perform in electric power systems Covers a wide range of applications of the VSC in electric power systems—including wind power conversion systems Adopts a systematic approach to the modeling and control design problems Illustrates the control design procedures and expected performance based on a comprehensive set of examples and digital computer time-domain simulation studies This comprehensive text presents effective techniques for mathematical modeling and control design, and helps readers understand the procedures and analysis steps. Detailed simulation case studies are included to highlight the salient points and verify the designs. Voltage-Sourced Converters in Power Systems is an ideal reference for senior undergraduate and graduate students in power engineering programs, practicing engineers who deal with grid integration and operation of distributed energy resource units, design engineers, and researchers in the area of electric power generation, transmission, distribution, and utilization.


HVDC Grids

HVDC Grids

Author: Dirk Van Hertem

Publisher: John Wiley & Sons

Published: 2016-02-23

Total Pages: 589

ISBN-13: 111911523X

DOWNLOAD EBOOK

This book discusses HVDC grids based on multi-terminal voltage-source converters (VSC), which is suitable for the connection of offshore wind farms and a possible solution for a continent wide overlay grid. HVDC Grids: For Offshore and Supergrid of the Future begins by introducing and analyzing the motivations and energy policy drives for developing offshore grids and the European Supergrid. HVDC transmission technology and offshore equipment are described in the second part of the book. The third part of the book discusses how HVDC grids can be developed and integrated in the existing power system. The fourth part of the book focuses on HVDC grid integration, in studies, for different time domains of electric power systems. The book concludes by discussing developments of advanced control methods and control devices for enabling DC grids. Presents the technology of the future offshore and HVDC grid Explains how offshore and HVDC grids can be integrated in the existing power system Provides the required models to analyse the different time domains of power system studies: from steady-state to electromagnetic transients This book is intended for power system engineers and academics with an interest in HVDC or power systems, and policy makers. The book also provides a solid background for researchers working with VSC-HVDC technologies, power electronic devices, offshore wind farm integration, and DC grid protection.


Multi-terminal Direct-Current Grids

Multi-terminal Direct-Current Grids

Author: Nilanjan Chaudhuri

Publisher: John Wiley & Sons

Published: 2014-09-09

Total Pages: 289

ISBN-13: 1118729102

DOWNLOAD EBOOK

A generic DC grid model that is compatible with the standard AC system stability model is presented and used to analyse the interaction between the DC grid and the host AC systems. A multi-terminal DC (MTDC) grid interconnecting multiple AC systems and offshore energy sources (e.g. wind farms) across the nations and continents would allow effective sharing of intermittent renewable resources and open market operation for secure and cost-effective supply of electricity. However, such DC grids are unprecedented with no operational experience. Despite lots of discussions and specific visions for setting up such MTDC grids particularly in Europe, none has yet been realized in practice due to two major technical barriers: Lack of proper understanding about the interaction between a MTDC grid and the surrounding AC systems. Commercial unavailability of efficient DC side fault current interruption technology for conventional voltage sourced converter systems This book addresses the first issue in details by presenting a comprehensive modeling, analysis and control design framework. Possible methodologies for autonomous power sharing and exchange of frequency support across a MTDC grid and their impact on overall stability is covered. An overview of the state-of-the-art, challenges and on-going research and development initiatives for DC side fault current interruption is also presented.


Hvdc Transmission +1: Vsc Hvdc Based Mmc Topology In Power Systems

Hvdc Transmission +1: Vsc Hvdc Based Mmc Topology In Power Systems

Author: Chan-ki Kim

Publisher: World Scientific

Published: 2021-04-09

Total Pages: 497

ISBN-13: 9811213593

DOWNLOAD EBOOK

HVDC grids and super grids have sparked so much interest these days that researchers and engineers across the globe are talking about them, studying them, supporting them, or questioning them. This book provides valuable information for researchers, industry, and policy makers. It explains why HVDC is favorable over AC technologies for power transmission; what the key technologies and challenges are for developing an HVDC grid; how an HVDC grid will be designed and operated; and how future HVDC grids will evolve. The book also devotes significant attention to nontechnical aspects such as the influence of energy policy and regulatory frameworks.This book is a result of collaboration between industry and academia. It provides theoretical insights into the design and control of MMC technology and investigates practical aspects of the project planning, design, manufacture, implementation, and commissioning of MMC-HVDC and multi-terminal HVDC transmission technologies; filling the knowledge gap between the technology specialists and VSC-HVDC project developers and key personnel involved in those projects.


Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems

Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems

Author: Kamran Sharifabadi

Publisher: John Wiley & Sons

Published: 2016-10-17

Total Pages: 414

ISBN-13: 1118851560

DOWNLOAD EBOOK

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission. Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids. Key features: Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland. Comprehensive explanation of MMC application in HVDC and MTDC transmission technology. Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore. Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals. A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website. This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.