Lectures on Analytic Differential Equations

Lectures on Analytic Differential Equations

Author: I︠U︡. S. Ilʹi︠a︡shenko

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 641

ISBN-13: 0821836676

DOWNLOAD EBOOK

The book combines the features of a graduate-level textbook with those of a research monograph and survey of the recent results on analysis and geometry of differential equations in the real and complex domain. As a graduate textbook, it includes self-contained, sometimes considerably simplified demonstrations of several fundamental results, which previously appeared only in journal publications (desingularization of planar analytic vector fields, existence of analytic separatrices, positive and negative results on the Riemann-Hilbert problem, Ecalle-Voronin and Martinet-Ramis moduli, solution of the Poincare problem on the degree of an algebraic separatrix, etc.). As a research monograph, it explores in a systematic way the algebraic decidability of local classification problems, rigidity of holomorphic foliations, etc. Each section ends with a collection of problems, partly intended to help the reader to gain understanding and experience with the material, partly drafting demonstrations of the mor The exposition of the book is mostly geometric, though the algebraic side of the constructions is also prominently featured. on several occasions the reader is introduced to adjacent areas, such as intersection theory for divisors on the projective plane or geometric theory of holomorphic vector bundles with meromorphic connections. The book provides the reader with the principal tools of the modern theory of analytic differential equations and intends to serve as a standard source for references in this area.


Analytic Methods In The Theory Of Differential And Pseudo-Differential Equations Of Parabolic Type

Analytic Methods In The Theory Of Differential And Pseudo-Differential Equations Of Parabolic Type

Author: Samuil D. Eidelman

Publisher: Springer Science & Business Media

Published: 2004-09-27

Total Pages: 406

ISBN-13: 9783764371159

DOWNLOAD EBOOK

This book is devoted to new classes of parabolic differential and pseudo-differential equations extensively studied in the last decades, such as parabolic systems of a quasi-homogeneous structure, degenerate equations of the Kolmogorov type, pseudo-differential parabolic equations, and fractional diffusion equations. It will appeal to mathematicians interested in new classes of partial differential equations, and physicists specializing in diffusion processes.


Galois Theory of Linear Differential Equations

Galois Theory of Linear Differential Equations

Author: Marius van der Put

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 446

ISBN-13: 3642557503

DOWNLOAD EBOOK

From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews


Analytic Methods for Partial Differential Equations

Analytic Methods for Partial Differential Equations

Author: G. Evans

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 308

ISBN-13: 1447103793

DOWNLOAD EBOOK

This is the practical introduction to the analytical approach taken in Volume 2. Based upon courses in partial differential equations over the last two decades, the text covers the classic canonical equations, with the method of separation of variables introduced at an early stage. The characteristic method for first order equations acts as an introduction to the classification of second order quasi-linear problems by characteristics. Attention then moves to different co-ordinate systems, primarily those with cylindrical or spherical symmetry. Hence a discussion of special functions arises quite naturally, and in each case the major properties are derived. The next section deals with the use of integral transforms and extensive methods for inverting them, and concludes with links to the use of Fourier series.


Functional Analysis, Sobolev Spaces and Partial Differential Equations

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Author: Haim Brezis

Publisher: Springer Science & Business Media

Published: 2010-11-02

Total Pages: 600

ISBN-13: 0387709142

DOWNLOAD EBOOK

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.


Analytic, Algebraic and Geometric Aspects of Differential Equations

Analytic, Algebraic and Geometric Aspects of Differential Equations

Author: Galina Filipuk

Publisher: Birkhäuser

Published: 2017-06-23

Total Pages: 472

ISBN-13: 3319528424

DOWNLOAD EBOOK

This volume consists of invited lecture notes, survey papers and original research papers from the AAGADE school and conference held in Będlewo, Poland in September 2015. The contributions provide an overview of the current level of interaction between algebra, geometry and analysis and demonstrate the manifold aspects of the theory of ordinary and partial differential equations, while also pointing out the highly fruitful interrelations between those aspects. These interactions continue to yield new developments, not only in the theory of differential equations but also in several related areas of mathematics and physics such as differential geometry, representation theory, number theory and mathematical physics. The main goal of the volume is to introduce basic concepts, techniques, detailed and illustrative examples and theorems (in a manner suitable for non-specialists), and to present recent developments in the field, together with open problems for more advanced and experienced readers. It will be of interest to graduate students, early-career researchers and specialists in analysis, geometry, algebra and related areas, as well as anyone interested in learning new methods and techniques.


Ordinary Differential Equations

Ordinary Differential Equations

Author: Hartmut Logemann

Publisher: Springer

Published: 2014-07-08

Total Pages: 342

ISBN-13: 1447163982

DOWNLOAD EBOOK

The book comprises a rigorous and self-contained treatment of initial-value problems for ordinary differential equations. It additionally develops the basics of control theory, which is a unique feature in current textbook literature. The following topics are particularly emphasised: • existence, uniqueness and continuation of solutions, • continuous dependence on initial data, • flows, • qualitative behaviour of solutions, • limit sets, • stability theory, • invariance principles, • introductory control theory, • feedback and stabilization. The last two items cover classical control theoretic material such as linear control theory and absolute stability of nonlinear feedback systems. It also includes an introduction to the more recent concept of input-to-state stability. Only a basic grounding in linear algebra and analysis is assumed. Ordinary Differential Equations will be suitable for final year undergraduate students of mathematics and appropriate for beginning postgraduates in mathematics and in mathematically oriented engineering and science.


Ordinary Differential Equations in the Complex Domain

Ordinary Differential Equations in the Complex Domain

Author: Einar Hille

Publisher: Courier Corporation

Published: 1997-01-01

Total Pages: 514

ISBN-13: 9780486696201

DOWNLOAD EBOOK

Graduate-level text offers full treatments of existence theorems, representation of solutions by series, theory of majorants, dominants and minorants, questions of growth, much more. Includes 675 exercises. Bibliography.


Algebraic Analysis of Differential Equations

Algebraic Analysis of Differential Equations

Author: T. Aoki

Publisher: Springer Science & Business Media

Published: 2009-03-15

Total Pages: 349

ISBN-13: 4431732403

DOWNLOAD EBOOK

This volume contains 23 articles on algebraic analysis of differential equations and related topics, most of which were presented as papers at the conference "Algebraic Analysis of Differential Equations – from Microlocal Analysis to Exponential Asymptotics" at Kyoto University in 2005. This volume is dedicated to Professor Takahiro Kawai, who is one of the creators of microlocal analysis and who introduced the technique of microlocal analysis into exponential asymptotics.