Analytic Methods for Partial Differential Equations

Analytic Methods for Partial Differential Equations

Author: G. Evans

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 308

ISBN-13: 1447103793

DOWNLOAD EBOOK

This is the practical introduction to the analytical approach taken in Volume 2. Based upon courses in partial differential equations over the last two decades, the text covers the classic canonical equations, with the method of separation of variables introduced at an early stage. The characteristic method for first order equations acts as an introduction to the classification of second order quasi-linear problems by characteristics. Attention then moves to different co-ordinate systems, primarily those with cylindrical or spherical symmetry. Hence a discussion of special functions arises quite naturally, and in each case the major properties are derived. The next section deals with the use of integral transforms and extensive methods for inverting them, and concludes with links to the use of Fourier series.


Partial Differential Equations 2

Partial Differential Equations 2

Author: Friedrich Sauvigny

Publisher: Springer Science & Business Media

Published: 2006-10-11

Total Pages: 401

ISBN-13: 3540344624

DOWNLOAD EBOOK

This encyclopedic work covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Emphasis is placed on the connection of PDEs and complex variable methods. This second volume addresses Solvability of operator equations in Banach spaces; Linear operators in Hilbert spaces and spectral theory; Schauder's theory of linear elliptic differential equations; Weak solutions of differential equations; Nonlinear partial differential equations and characteristics; Nonlinear elliptic systems with differential-geometric applications. While partial differential equations are solved via integral representations in the preceding volume, this volume uses functional analytic solution methods.


Functional Analytic Methods for Partial Differential Equations

Functional Analytic Methods for Partial Differential Equations

Author: Hiroki Tanabe

Publisher: CRC Press

Published: 1996-09-04

Total Pages: 436

ISBN-13: 9780824797744

DOWNLOAD EBOOK

Combining both classical and current methods of analysis, this text present discussions on the application of functional analytic methods in partial differential equations. It furnishes a simplified, self-contained proof of Agmon-Douglis-Niremberg's Lp-estimates for boundary value problems, using the theory of singular integrals and the Hilbert transform.


Complex Analytic Methods for Partial Differential Equations

Complex Analytic Methods for Partial Differential Equations

Author: Heinrich G. W. Begehr

Publisher: World Scientific

Published: 1994

Total Pages: 288

ISBN-13: 9789810215507

DOWNLOAD EBOOK

This is an introductory text for beginners who have a basic knowledge of complex analysis, functional analysis and partial differential equations. Riemann and Riemann-Hilbert boundary value problems are discussed for analytic functions, for inhomogeneous Cauchy-Riemann systems as well as for generalized Beltrami systems. Related problems such as the Poincar‚ problem, pseudoparabolic systems and complex elliptic second order equations are also considered. Estimates for solutions to linear equations existence and uniqueness results are thus available for related nonlinear problems; the method is explained by constructing entire solutions to nonlinear Beltrami equations. Often problems are discussed just for the unit disc but more general domains, even of multiply connectivity, are involved.


Complex Analytic Methods For Partial Differential Equations: An Introductory Text

Complex Analytic Methods For Partial Differential Equations: An Introductory Text

Author: Heinrich G W Begehr

Publisher: World Scientific Publishing Company

Published: 1994-11-15

Total Pages: 286

ISBN-13: 9813104686

DOWNLOAD EBOOK

This is an introductory text for beginners who have a basic knowledge of complex analysis, functional analysis and partial differential equations. Riemann and Riemann-Hilbert boundary value problems are discussed for analytic functions, for inhomogeneous Cauchy-Riemann systems as well as for generalized Beltrami systems. Related problems such as the Poincaré problem, pseudoparabolic systems and complex elliptic second order equations are also considered. Estimates for solutions to linear equations existence and uniqueness results are thus available for related nonlinear problems; the method is explained by constructing entire solutions to nonlinear Beltrami equations. Often problems are discussed just for the unit disc but more general domains, even of multiply connectivity, are involved.


Functional Analytic Methods for Partial Differential Equations

Functional Analytic Methods for Partial Differential Equations

Author: Hiroki Tanabe

Publisher: CRC Press

Published: 2017-11-22

Total Pages: 431

ISBN-13: 1351446878

DOWNLOAD EBOOK

Combining both classical and current methods of analysis, this text present discussions on the application of functional analytic methods in partial differential equations. It furnishes a simplified, self-contained proof of Agmon-Douglis-Niremberg's Lp-estimates for boundary value problems, using the theory of singular integrals and the Hilbert transform.


Functional-Analytic Methods for Partial Differential Equations

Functional-Analytic Methods for Partial Differential Equations

Author: Hiroshi Fujita

Publisher: Springer

Published: 2006-11-14

Total Pages: 261

ISBN-13: 3540468188

DOWNLOAD EBOOK

Proceedings of the International Conference on Functional Analysis and Its Application in Honor of Professor Tosio Kato, July 3-6, 1989, University of Tokyo, and the Symposium on Spectral and Scattering Theory, held July 7, 1989, at Gakushin University, Tokyo.


Analytic Methods In The Theory Of Differential And Pseudo-Differential Equations Of Parabolic Type

Analytic Methods In The Theory Of Differential And Pseudo-Differential Equations Of Parabolic Type

Author: Samuil D. Eidelman

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 395

ISBN-13: 3034878443

DOWNLOAD EBOOK

This book is devoted to new classes of parabolic differential and pseudo-differential equations extensively studied in the last decades, such as parabolic systems of a quasi-homogeneous structure, degenerate equations of the Kolmogorov type, pseudo-differential parabolic equations, and fractional diffusion equations. It will appeal to mathematicians interested in new classes of partial differential equations, and physicists specializing in diffusion processes.


Fourier Series and Numerical Methods for Partial Differential Equations

Fourier Series and Numerical Methods for Partial Differential Equations

Author: Richard Bernatz

Publisher: John Wiley & Sons

Published: 2010-07-30

Total Pages: 336

ISBN-13: 0470651377

DOWNLOAD EBOOK

The importance of partial differential equations (PDEs) in modeling phenomena in engineering as well as in the physical, natural, and social sciences is well known by students and practitioners in these fields. Striking a balance between theory and applications, Fourier Series and Numerical Methods for Partial Differential Equations presents an introduction to the analytical and numerical methods that are essential for working with partial differential equations. Combining methodologies from calculus, introductory linear algebra, and ordinary differential equations (ODEs), the book strengthens and extends readers' knowledge of the power of linear spaces and linear transformations for purposes of understanding and solving a wide range of PDEs. The book begins with an introduction to the general terminology and topics related to PDEs, including the notion of initial and boundary value problems and also various solution techniques. Subsequent chapters explore: The solution process for Sturm-Liouville boundary value ODE problems and a Fourier series representation of the solution of initial boundary value problems in PDEs The concept of completeness, which introduces readers to Hilbert spaces The application of Laplace transforms and Duhamel's theorem to solve time-dependent boundary conditions The finite element method, using finite dimensional subspaces The finite analytic method with applications of the Fourier series methodology to linear version of non-linear PDEs Throughout the book, the author incorporates his own class-tested material, ensuring an accessible and easy-to-follow presentation that helps readers connect presented objectives with relevant applications to their own work. Maple is used throughout to solve many exercises, and a related Web site features Maple worksheets for readers to use when working with the book's one- and multi-dimensional problems. Fourier Series and Numerical Methods for Partial Differential Equations is an ideal book for courses on applied mathematics and partial differential equations at the upper-undergraduate and graduate levels. It is also a reliable resource for researchers and practitioners in the fields of mathematics, science, and engineering who work with mathematical modeling of physical phenomena, including diffusion and wave aspects.