Analytic Functions

Analytic Functions

Author: Rolf Nevanlinna

Publisher: Springer

Published: 2013-12-20

Total Pages: 383

ISBN-13: 3642855903

DOWNLOAD EBOOK

The present monograph on analytic functions coincides to a lar[extent with the presentation of the modern theory of single-value analytic functions given in my earlier works "Le theoreme de Picarc Borel et la theorie des fonctions meromorphes" (Paris: Gauthier-Villar 1929) and "Eindeutige analytische Funktionen" (Die Grundlehren dt mathematischen Wissenschaften in Einzeldarstellungen, VoL 46, 1: edition Berlin: Springer 1936, 2nd edition Berlin-Gottingen-Heidelberg Springer 1953). In these presentations I have strived to make the individual result and their proofs readily understandable and to treat them in the ligh of certain guiding principles in a unified way. A decisive step in thi direction within the theory of entire and meromorphic functions consiste- in replacing the classical representation of these functions through ca nonical products with more general tools from the potential theor (Green's formula and especially the Poisson-Jensen formula). On thi foundation it was possible to introduce the quantities (the characteristic the proximity and the counting functions) which are definitive for th


Analytic Functions of Several Complex Variables

Analytic Functions of Several Complex Variables

Author: Robert Clifford Gunning

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 338

ISBN-13: 0821821652

DOWNLOAD EBOOK

The theory of analytic functions of several complex variables enjoyed a period of remarkable development in the middle part of the twentieth century. This title intends to provide an extensive introduction to the Oka-Cartan theory and some of its applications, and to the general theory of analytic spaces.


A Primer of Real Analytic Functions

A Primer of Real Analytic Functions

Author: KRANTZ

Publisher: Birkhäuser

Published: 2013-03-09

Total Pages: 190

ISBN-13: 3034876440

DOWNLOAD EBOOK

The subject of real analytic functions is one of the oldest in mathe matical analysis. Today it is encountered early in ones mathematical training: the first taste usually comes in calculus. While most work ing mathematicians use real analytic functions from time to time in their work, the vast lore of real analytic functions remains obscure and buried in the literature. It is remarkable that the most accessible treatment of Puiseux's theorem is in Lefschetz's quite old Algebraic Geometry, that the clearest discussion of resolution of singularities for real analytic manifolds is in a book review by Michael Atiyah, that there is no comprehensive discussion in print of the embedding prob lem for real analytic manifolds. We have had occasion in our collaborative research to become ac quainted with both the history and the scope of the theory of real analytic functions. It seems both appropriate and timely for us to gather together this information in a single volume. The material presented here is of three kinds. The elementary topics, covered in Chapter 1, are presented in great detail. Even results like a real ana lytic inverse function theorem are difficult to find in the literature, and we take pains here to present such topics carefully. Topics of middling difficulty, such as separate real analyticity, Puiseux series, the FBI transform, and related ideas (Chapters 2-4), are covered thoroughly but rather more briskly.


Bounded Analytic Functions

Bounded Analytic Functions

Author: John Garnett

Publisher: Springer Science & Business Media

Published: 2007-04-05

Total Pages: 471

ISBN-13: 0387497633

DOWNLOAD EBOOK

This book is an account of the theory of Hardy spaces in one dimension, with emphasis on some of the exciting developments of the past two decades or so. The last seven of the ten chapters are devoted in the main to these recent developments. The motif of the theory of Hardy spaces is the interplay between real, complex, and abstract analysis. While paying proper attention to each of the three aspects, the author has underscored the effectiveness of the methods coming from real analysis, many of them developed as part of a program to extend the theory to Euclidean spaces, where the complex methods are not available.


Interpolation and Sampling in Spaces of Analytic Functions

Interpolation and Sampling in Spaces of Analytic Functions

Author: Kristian Seip

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 153

ISBN-13: 0821835548

DOWNLOAD EBOOK

Based on a series of six lectures given by the author at the University of Michigan, this book is intended as an introduction to the topic of interpolation and sampling in analytic function spaces. The three major topics covered are Nevanlinna-Pick interpolation, Carleson's interpolation theorem, an


Analytic Functions

Analytic Functions

Author: M.A. Evgrafov

Publisher: Courier Dover Publications

Published: 2019-09-18

Total Pages: 355

ISBN-13: 0486837602

DOWNLOAD EBOOK

This highly regarded text is directed toward advanced undergraduates and graduate students in mathematics who are interested in developing a firm foundation in the theory of functions of a complex variable. The treatment departs from traditional presentations in its early development of a rigorous discussion of the theory of multiple-valued analytic functions on the basis of analytic continuation. Thus it offers an early introduction of Riemann surfaces, conformal mapping, and the applications of residue theory. M. A. Evgrafov focuses on aspects of the theory that relate to modern research and assumes an acquaintance with the basics of mathematical analysis derived from a year of advanced calculus. Starting with an introductory chapter containing the fundamental results concerning limits, continuity, and integrals, the book addresses analytic functions and their properties, multiple-valued analytic functions, singular points and expansion in series, the Laplace transform, harmonic and subharmonic functions, extremal problems and distribution of values, and other subjects. Chapters are largely self-contained, making this volume equally suitable for the classroom or independent study.


From Divergent Power Series to Analytic Functions

From Divergent Power Series to Analytic Functions

Author: Werner Balser

Publisher: Springer

Published: 2006-11-15

Total Pages: 117

ISBN-13: 3540485945

DOWNLOAD EBOOK

Multisummability is a method which, for certain formal power series with radius of convergence equal to zero, produces an analytic function having the formal series as its asymptotic expansion. This book presents the theory of multisummabi- lity, and as an application, contains a proof of the fact that all formal power series solutions of non-linear meromorphic ODE are multisummable. It will be of use to graduate students and researchers in mathematics and theoretical physics, and especially to those who encounter formal power series to (physical) equations with rapidly, but regularly, growing coefficients.


Zeros of Gaussian Analytic Functions and Determinantal Point Processes

Zeros of Gaussian Analytic Functions and Determinantal Point Processes

Author: John Ben Hough

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 170

ISBN-13: 0821843737

DOWNLOAD EBOOK

Examines in some depth two important classes of point processes, determinantal processes and 'Gaussian zeros', i.e., zeros of random analytic functions with Gaussian coefficients. This title presents a primer on modern techniques on the interface of probability and analysis.


Boundary Value Problems for Analytic Functions

Boundary Value Problems for Analytic Functions

Author: Jian-Ke Lu

Publisher: World Scientific

Published: 1993

Total Pages: 484

ISBN-13: 9789810210205

DOWNLOAD EBOOK

This book deals with boundary value problems for analytic functions with applications to singular integral equations. New and simpler proofs of certain classical results such as the Plemelj formula, the Privalov theorem and the Poincar‚-Bertrand formula are given. Nearly one third of this book contains the author's original works, most of which have not been published in English before and, hence, were previously unknown to most readers in the world.It consists of 7 chapters together with an appendix: Chapter I describes the basic knowledge on Cauchy-type integrals and Cauchy principal value integrals; Chapters II and III study, respectively, fundamental boundary value problems and their applications to singular integral equations for closed contours; Chapters IV and V discuss the same problems for curves with nodes (including open arcs); Chaper VI deals with similar problems for systems of functions; Chapter VII is concerned with some miscellaneous problems and the Appendix contains some basic results on Fredholm integral equations. In most sections, there are carefully selected sets of exercises, some of which supplement the text of the sections; answers/hints are also given for some of these exercises.For graduate students or seniors, all the 7 chapters can be used for a full year course, while the first 3 chapters may be used for a one-semester course.