Analytic Function Theory

Analytic Function Theory

Author: Einar Hille

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 510

ISBN-13: 9780821829141

DOWNLOAD EBOOK

Emphasizes the conceptual and historical continuity of analytic function theory. This work covers topics including elliptic functions, entire and meromorphic functions, as well as conformal mapping. It features chapters on majorization and on functions holomorphic in a half-plane.


Analytic Function Theory, Volume I

Analytic Function Theory, Volume I

Author: Einar Hille

Publisher: American Mathematical Soc.

Published: 2012-04-11

Total Pages: 322

ISBN-13: 082187568X

DOWNLOAD EBOOK

Second Edition. This famous work is a textbook that emphasizes the conceptual and historical continuity of analytic function theory. The second volume broadens from a textbook to a textbook-treatise, covering the "canonical" topics (including elliptic functions, entire and meromorphic functions, as well as conformal mapping, etc.) and other topics nearer the expanding frontier of analytic function theory. In the latter category are the chapters on majorization and on functions holomorphic in a half-plane.


Analytic Functions

Analytic Functions

Author: Rolf Nevanlinna

Publisher: Springer

Published: 2013-12-20

Total Pages: 383

ISBN-13: 3642855903

DOWNLOAD EBOOK

The present monograph on analytic functions coincides to a lar[extent with the presentation of the modern theory of single-value analytic functions given in my earlier works "Le theoreme de Picarc Borel et la theorie des fonctions meromorphes" (Paris: Gauthier-Villar 1929) and "Eindeutige analytische Funktionen" (Die Grundlehren dt mathematischen Wissenschaften in Einzeldarstellungen, VoL 46, 1: edition Berlin: Springer 1936, 2nd edition Berlin-Gottingen-Heidelberg Springer 1953). In these presentations I have strived to make the individual result and their proofs readily understandable and to treat them in the ligh of certain guiding principles in a unified way. A decisive step in thi direction within the theory of entire and meromorphic functions consiste- in replacing the classical representation of these functions through ca nonical products with more general tools from the potential theor (Green's formula and especially the Poisson-Jensen formula). On thi foundation it was possible to introduce the quantities (the characteristic the proximity and the counting functions) which are definitive for th


Analytic Function Theory of Several Variables

Analytic Function Theory of Several Variables

Author: Junjiro Noguchi

Publisher: Springer

Published: 2016-08-16

Total Pages: 407

ISBN-13: 9811002916

DOWNLOAD EBOOK

The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert–Remmert's two volumes, GL227(236) (Theory of Stein spaces) and GL265 (Coherent analytic sheaves) with a lowering of the level for novice graduate students (here, Grauert's direct image theorem is limited to the case of finite maps).The core of the theory is "Oka's Coherence", found and proved by Kiyoshi Oka. It is indispensable, not only in the study of complex analysis and complex geometry, but also in a large area of modern mathematics. In this book, just after an introductory chapter on holomorphic functions (Chap. 1), we prove Oka's First Coherence Theorem for holomorphic functions in Chap. 2. This defines a unique character of the book compared with other books on this subject, in which the notion of coherence appears much later.The present book, consisting of nine chapters, gives complete treatments of the following items: Coherence of sheaves of holomorphic functions (Chap. 2); Oka–Cartan's Fundamental Theorem (Chap. 4); Coherence of ideal sheaves of complex analytic subsets (Chap. 6); Coherence of the normalization sheaves of complex spaces (Chap. 6); Grauert's Finiteness Theorem (Chaps. 7, 8); Oka's Theorem for Riemann domains (Chap. 8). The theories of sheaf cohomology and domains of holomorphy are also presented (Chaps. 3, 5). Chapter 6 deals with the theory of complex analytic subsets. Chapter 8 is devoted to the applications of formerly obtained results, proving Cartan–Serre's Theorem and Kodaira's Embedding Theorem. In Chap. 9, we discuss the historical development of "Coherence".It is difficult to find a book at this level that treats all of the above subjects in a completely self-contained manner. In the present volume, a number of classical proofs are improved and simplified, so that the contents are easily accessible for beginning graduate students.


Current Topics In Analytic Function Theory

Current Topics In Analytic Function Theory

Author: Shigeyoshi Owa

Publisher: World Scientific

Published: 1992-12-31

Total Pages: 475

ISBN-13: 9814505692

DOWNLOAD EBOOK

This volume is a collection of research-and-survey articles by eminent and active workers around the world on the various areas of current research in the theory of analytic functions.Many of these articles emerged essentially from the proceedings of, and various deliberations at, three recent conferences in Japan and Korea: An International Seminar on Current Topics in Univalent Functions and Their Applications which was held in August 1990, in conjunction with the International Congress of Mathematicians at Kyoto, at Kinki University in Osaka; An International Seminar on Univalent Functions, Fractional Calculus, and Their Applications which was held in October 1990 at Fukuoka University; and also the Japan-Korea Symposium on Univalent Functions which was held in January 1991 at Gyeongsang National University in Chinju.


Analytic Function Theory

Analytic Function Theory

Author: Einar Hille

Publisher: American Mathematical Soc.

Published: 1973

Total Pages: 320

ISBN-13: 9780828402699

DOWNLOAD EBOOK

Emphasizes the conceptual and historical continuity of analytic function theory. This book covers canonical topics including elliptic functions, entire and meromorphic functions, as well as conformal mapping. It also features chapters on majorization and on functions holomorphic in a half-plane.


Analytic Functions of Several Complex Variables

Analytic Functions of Several Complex Variables

Author: Robert Clifford Gunning

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 338

ISBN-13: 0821821652

DOWNLOAD EBOOK

The theory of analytic functions of several complex variables enjoyed a period of remarkable development in the middle part of the twentieth century. This title intends to provide an extensive introduction to the Oka-Cartan theory and some of its applications, and to the general theory of analytic spaces.


Handbook of Complex Analysis

Handbook of Complex Analysis

Author: Reiner Kuhnau

Publisher: Elsevier

Published: 2002-12-05

Total Pages: 549

ISBN-13: 0080532810

DOWNLOAD EBOOK

Geometric Function Theory is a central part of Complex Analysis (one complex variable). The Handbook of Complex Analysis - Geometric Function Theory deals with this field and its many ramifications and relations to other areas of mathematics and physics. The theory of conformal and quasiconformal mappings plays a central role in this Handbook, for example a priori-estimates for these mappings which arise from solving extremal problems, and constructive methods are considered. As a new field the theory of circle packings which goes back to P. Koebe is included. The Handbook should be useful for experts as well as for mathematicians working in other areas, as well as for physicists and engineers.· A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane)


From Divergent Power Series to Analytic Functions

From Divergent Power Series to Analytic Functions

Author: Werner Balser

Publisher: Springer

Published: 2006-11-15

Total Pages: 117

ISBN-13: 3540485945

DOWNLOAD EBOOK

Multisummability is a method which, for certain formal power series with radius of convergence equal to zero, produces an analytic function having the formal series as its asymptotic expansion. This book presents the theory of multisummabi- lity, and as an application, contains a proof of the fact that all formal power series solutions of non-linear meromorphic ODE are multisummable. It will be of use to graduate students and researchers in mathematics and theoretical physics, and especially to those who encounter formal power series to (physical) equations with rapidly, but regularly, growing coefficients.