Analysis of Variance for Functional Data

Analysis of Variance for Functional Data

Author: Jin-Ting Zhang

Publisher: CRC Press

Published: 2013-06-18

Total Pages: 406

ISBN-13: 1439862745

DOWNLOAD EBOOK

Despite research interest in functional data analysis in the last three decades, few books are available on the subject. Filling this gap, Analysis of Variance for Functional Data presents up-to-date hypothesis testing methods for functional data analysis. The book covers the reconstruction of functional observations, functional ANOVA, functional l


Analysis of Variance for Functional Data

Analysis of Variance for Functional Data

Author: Jin-Ting Zhang

Publisher:

Published: 2024-10-14

Total Pages: 0

ISBN-13: 9781032920399

DOWNLOAD EBOOK

This self-contained book presents up-to-date hypothesis testing methods for functional data analysis. Useful for statistical researchers and practitioners analyzing functional data, it gives both a theoretical and applied treatment of functional data analysis supported by easy-to-use MATLAB(R) code. The book covers the reconstruction of


Analysis of Variance for Functional Data

Analysis of Variance for Functional Data

Author: Jin-Ting Zhang

Publisher: Chapman and Hall/CRC

Published: 2013-06-18

Total Pages: 0

ISBN-13: 9781439862735

DOWNLOAD EBOOK

Despite research interest in functional data analysis in the last three decades, few books are available on the subject. Filling this gap, Analysis of Variance for Functional Data presents up-to-date hypothesis testing methods for functional data analysis. The book covers the reconstruction of functional observations, functional ANOVA, functional linear models with functional responses, ill-conditioned functional linear models, diagnostics of functional observations, heteroscedastic ANOVA for functional data, and testing equality of covariance functions. Although the methodologies presented are designed for curve data, they can be extended to surface data. Useful for statistical researchers and practitioners analyzing functional data, this self-contained book gives both a theoretical and applied treatment of functional data analysis supported by easy-to-use MATLAB® code. The author provides a number of simple methods for functional hypothesis testing. He discusses pointwise, L2-norm-based, F-type, and bootstrap tests. Assuming only basic knowledge of statistics, calculus, and matrix algebra, the book explains the key ideas at a relatively low technical level using real data examples. Each chapter also includes bibliographical notes and exercises. Real functional data sets from the text and MATLAB codes for analyzing the data examples are available for download from the author’s website.


Functional Data Analysis with R and MATLAB

Functional Data Analysis with R and MATLAB

Author: James Ramsay

Publisher: Springer Science & Business Media

Published: 2009-06-29

Total Pages: 213

ISBN-13: 0387981853

DOWNLOAD EBOOK

The book provides an application-oriented overview of functional analysis, with extended and accessible presentations of key concepts such as spline basis functions, data smoothing, curve registration, functional linear models and dynamic systems Functional data analysis is put to work in a wide a range of applications, so that new problems are likely to find close analogues in this book The code in R and Matlab in the book has been designed to permit easy modification to adapt to new data structures and research problems


Functional Data Analysis

Functional Data Analysis

Author: James Ramsay

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 317

ISBN-13: 147577107X

DOWNLOAD EBOOK

Included here are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drawn from growth analysis, meteorology, biomechanics, equine science, economics, and medicine. The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, applied data analysts, and to experienced researchers; and as such is of value both within statistics and across a broad spectrum of other fields. Much of the material appears here for the first time.


Applied Functional Data Analysis

Applied Functional Data Analysis

Author: J.O. Ramsay

Publisher: Springer

Published: 2007-11-23

Total Pages: 194

ISBN-13: 0387224653

DOWNLOAD EBOOK

This book contains the ideas of functional data analysis by a number of case studies. The case studies are accessible to research workers in a wide range of disciplines. Every reader should gain not only a specific understanding of the methods of functional data analysis, but more importantly a general insight into the underlying patterns of thought. There is an associated web site with MATLABr and S?PLUSr implementations of the methods discussed.


Nonparametric Functional Data Analysis

Nonparametric Functional Data Analysis

Author: Frédéric Ferraty

Publisher: Springer Science & Business Media

Published: 2006-11-22

Total Pages: 260

ISBN-13: 0387366202

DOWNLOAD EBOOK

Modern apparatuses allow us to collect samples of functional data, mainly curves but also images. On the other hand, nonparametric statistics produces useful tools for standard data exploration. This book links these two fields of modern statistics by explaining how functional data can be studied through parameter-free statistical ideas. At the same time it shows how functional data can be studied through parameter-free statistical ideas, and offers an original presentation of new nonparametric statistical methods for functional data analysis.


Geostatistical Functional Data Analysis

Geostatistical Functional Data Analysis

Author: Jorge Mateu

Publisher: John Wiley & Sons

Published: 2021-12-13

Total Pages: 452

ISBN-13: 1119387841

DOWNLOAD EBOOK

Geostatistical Functional Data Analysis Explore the intersection between geostatistics and functional data analysis with this insightful new reference Geostatistical Functional Data Analysis presents a unified approach to modelling functional data when spatial and spatio-temporal correlations are present. The Editors link together the wide research areas of geostatistics and functional data analysis to provide the reader with a new area called geostatistical functional data analysis that will bring new insights and new open questions to researchers coming from both scientific fields. This book provides a complete and up-to-date account to deal with functional data that is spatially correlated, but also includes the most innovative developments in different open avenues in this field. Containing contributions from leading experts in the field, this practical guide provides readers with the necessary tools to employ and adapt classic statistical techniques to handle spatial regression. The book also includes: A thorough introduction to the spatial kriging methodology when working with functions A detailed exposition of more classical statistical techniques adapted to the functional case and extended to handle spatial correlations Practical discussions of ANOVA, regression, and clustering methods to explore spatial correlation in a collection of curves sampled in a region In-depth explorations of the similarities and differences between spatio-temporal data analysis and functional data analysis Aimed at mathematicians, statisticians, postgraduate students, and researchers involved in the analysis of functional and spatial data, Geostatistical Functional Data Analysis will also prove to be a powerful addition to the libraries of geoscientists, environmental scientists, and economists seeking insightful new knowledge and questions at the interface of geostatistics and functional data analysis.


Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators

Author: Tailen Hsing

Publisher: John Wiley & Sons

Published: 2015-05-06

Total Pages: 363

ISBN-13: 0470016914

DOWNLOAD EBOOK

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA). The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis. This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.


Analysis of Variance and Functional Measurement

Analysis of Variance and Functional Measurement

Author: David J. Weiss

Publisher: Oxford University Press

Published: 2006

Total Pages: 278

ISBN-13: 0195183150

DOWNLOAD EBOOK

This book is a clear and straightforward guide to analysis of variance, the backbone of experimental research. It will show you how to interpret statistical results and translate them into prose that will clearly tell your audience what your data is saying. To help you become familiar with the techniques used in analysis of variance, there are plenty of end-of-chapter practice problems with suggested answers. As life in the laboratory doesnt always follow a script, there are both new and established techniques for coping with situations that deviate from the norm. Data analysis is not a closed subject, so there are pros and cons for the varied situations you will encounter. The final chapter gives the first elementary presentation of functional measurement, or information integration theory, a methodology built upon analysis of variance that is a powerful technique for studying cognitive processes. The accompanying CD contains CALSTAT, analysis of variance software that is easy to use (really!). In addition to programs for standard analysis, the software includes several specialized routines that have heretofore been presented only in journals. Analysis of Variance is an important resource for students and professionals in the social, behavioral, and neurosciences.