A clear and systematic treatment of time series of data, regular and chaotic, found in nonlinear systems. The text leads readers from measurements of one or more variables through the steps of building models of the source as a dynamical system, classifying the source by its dynamical characteristics, and finally predicting and controlling the dynamical system. It examines methods for separating the signal of physical interest from contamination by unwanted noise, and for investigating the phase space of the chaotic signal and its properties. The emphasis throughout is on the use of modern mathematical tools for investigating chaotic behaviour to uncover properties of physical systems, requiring knowledge of dynamical systems at the advanced undergraduate level and some knowledge of Fourier transforms and other signal processing methods.
The paradigm of deterministic chaos has influenced thinking in many fields of science. Chaotic systems show rich and surprising mathematical structures. In the applied sciences, deterministic chaos provides a striking explanation for irregular behaviour and anomalies in systems which do not seem to be inherently stochastic. The most direct link between chaos theory and the real world is the analysis of time series from real systems in terms of nonlinear dynamics. Experimental technique and data analysis have seen such dramatic progress that, by now, most fundamental properties of nonlinear dynamical systems have been observed in the laboratory. Great efforts are being made to exploit ideas from chaos theory wherever the data displays more structure than can be captured by traditional methods. Problems of this kind are typical in biology and physiology but also in geophysics, economics, and many other sciences.
Chaos in Real Data studies the range of data analytic techniques available to study nonlinear population dynamics for ecological time series. Several case studies are studied using typically short and noisy population data from field and laboratory. A range of modern approaches, such as response surface methodology and mechanistic mathematical modelling, are applied to several case studies. Experts honestly appraise how well these methods have performed on their data. The accessible style of the book ensures its readability for non-quantitative biologists. The data remain available, as benchmarks for future study, on the worldwide web.
This book is more than a standard proceedings volume, although it is an almost direct result of the workshop on "Nonlinear Analysis of Physiologi cal Time Series" held in Freital near Dresden, Germany, in October 1995. The idea of the meeting was, as for previous meetings devoted to related topics, such as the conference on dynamical diseases held near Montreal in February 1994 (see CHAOS Vol. 5(1), 1995), to bring together experts on the techniques of nonlinear analysis and the theory of chaos and applicants from the most fascinating field where such methods could potentially be useful: the life sciences. The former group consisted mainly of physicists and mathe maticians, the latter was represented by physiologists and medical researchers and practitioners. Many aspects of this workshop were unusual and not previously expe rienced. Also, the hosting institution, the Max Planck Institute for Physics of Complex Systems (MPIPKS), at this time was brand new. The organiz ers' rather unconventional intention was to bring specialists of both groups together to really work together. Therefore, there was an excessive availabil ity of computers and the possibility to numerically study time series data sets practitioners had supplied from their own fields, e. g. electrocardiogram (ECG) data, electroencephalogram (EEG) data, data from the respiratory system, from human voice, human posture control, and several others. These data formed a much stronger link between theoreticians and applicants than any of the common ideas.
Over the last two decades, chaos in engineering systems has moved from being simply a curious phenomenon to one with real, practical significance and utility. Engineers, scientists, and mathematicians have similarly advanced from the passive role of analyzing chaos to their present, active role of controlling chaos-control directed not only at suppression, but also at exploiting its enormous potential. We now stand at the threshold of major advances in the control and synchronization of chaos for new applications across the range of engineering disciplines. Controlling Chaos and Bifurcations in Engineering Systems provides a state-of-the-art survey of the control-and anti-control-of chaos in dynamical systems. Internationally known experts in the field join forces in this volume to form this tutorial-style combination of overview and technical report on the latest advances in the theory and applications of chaos control. They detail various approaches to control and show how designers can use chaos to create a wider variety of properties and greater flexibility in the design process. Chaos control promises to have a major impact on novel time- and energy-critical engineering applications. Within this volume, readers will find many challenging problems-yet unsolved-regarding both the fundamental theory and potential applications of chaos control and anti-control. Controlling Chaos and Bifurcations in Engineering Systems will bring readers up-to-date on recent development in the field and help open the door to new advances.
Lars Ahlfors's Lectures on Quasiconformal Mappings, based on a course he gave at Harvard University in the spring term of 1964, was first published in 1966 and was soon recognized as the classic it was shortly destined to become. These lectures develop the theory of quasiconformal mappings from scratch, give a self-contained treatment of the Beltrami equation, and cover the basic properties of Teichmuller spaces, including the Bers embedding and the Teichmuller curve. It isremarkable how Ahlfors goes straight to the heart of the matter, presenting major results with a minimum set of prerequisites. Many graduate students and other mathematicians have learned the foundations of the theories of quasiconformal mappings and Teichmuller spaces from these lecture notes. This editionincludes three new chapters. The first, written by Earle and Kra, describes further developments in the theory of Teichmuller spaces and provides many references to the vast literature on Teichmuller spaces and quasiconformal mappings. The second, by Shishikura, describes how quasiconformal mappings have revitalized the subject of complex dynamics. The third, by Hubbard, illustrates the role of these mappings in Thurston's theory of hyperbolic structures on 3-manifolds. Together, these threenew chapters exhibit the continuing vitality and importance of the theory of quasiconformal mappings. This book is a collection of research and expository papers reflecting the interfacing of two fields: nonlinear dynamics (in the physiological and biological sciences) and statistics. It presents theproceedings of a four-day workshop entitled ``Nonlinear Dynamics and Time Series: Building a Bridge Between the Natural and Statistical Sciences'' held at the Centre de Recherches Mathematiques (CRM) in Montreal in July 1995. The goal of the workshop was to provide an exchange forum and to create a link between two diverse groups with a common interest in the analysis of nonlinear time series data. The editors and peer reviewers of this work have attempted to minimize the problems ofmaintaining communication between the different scientific fields. The result is a collection of interrelated papers that highlight current areas of research in statistics that might have particular applicability to nonlinear dynamics and new methodology and open data analysis problems in nonlinear dynamicsthat might find their way into the toolkits and research interests of statisticians. Features: A survey of state-of-the-art developments in nonlinear dynamics time series analysis with open statistical problems and areas for further research. Contributions by statisticians to understanding and improving modern techniques commonly associated with nonlinear time series analysis, such as surrogate data methods and estimation of local Lyapunov exponents. Starting point for both scientists andstatisticians who want to explore the field. Expositions that are readable to scientists outside the featured fields of specialization. Information for our distributors: Titles in this series are copublished with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario,Canada).
This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in semiconductor lasers are discussed, but also for example the method of self-mixing interferometry in quantum-cascade lasers, which is indispensable in practical applications. Further, this edition covers chaos synchronization between two lasers and the application to secure optical communications. Another new topic is the consistency and synchronization property of many coupled semiconductor lasers in connection with the analogy of the dynamics between synaptic neurons and chaotic semiconductor lasers, which are compatible nonlinear dynamic elements. In particular, zero-lag synchronization between distant neurons plays a crucial role for information processing in the brain. Lastly, the book presents an application of the consistency and synchronization property in chaotic semiconductor lasers, namely a type of neuro-inspired information processing referred to as reservoir computing.
"Describes the application of statistical methods in different environmental fields, with an emphasis on how to solve real-world problems in complex systems"--Provided by publisher.
Lars Ahlfors's Lectures on Quasiconformal Mappings, based on a course he gave at Harvard University in the spring term of 1964, was first published in 1966 and was soon recognized as the classic it was shortly destined to become. These lectures develop the theory of quasiconformal mappings from scratch, give a self-contained treatment of the Beltrami equation, and cover the basic properties of Teichmuller spaces, including the Bers embedding and the Teichmuller curve. It isremarkable how Ahlfors goes straight to the heart of the matter, presenting major results with a minimum set of prerequisites. Many graduate students and other mathematicians have learned the foundations of the theories of quasiconformal mappings and Teichmuller spaces from these lecture notes. This editionincludes three new chapters. The first, written by Earle and Kra, describes further developments in the theory of Teichmuller spaces and provides many references to the vast literature on Teichmuller spaces and quasiconformal mappings. The second, by Shishikura, describes how quasiconformal mappings have revitalized the subject of complex dynamics. The third, by Hubbard, illustrates the role of these mappings in Thurston's theory of hyperbolic structures on 3-manifolds. Together, these threenew chapters exhibit the continuing vitality and importance of the theory of quasiconformal mappings. This book is a collection of research and expository papers reflecting the interfacing of two fields: nonlinear dynamics (in the physiological and biological sciences) and statistics. It presents theproceedings of a four-day workshop entitled ''Nonlinear Dynamics and Time Series: Building a Bridge Between the Natural and Statistical Sciences'' held at the Centre de Recherches Mathematiques (CRM) in Montreal in July 1995. The goal of the workshop was to provide an exchange forum and to create a link between two diverse groups with a common interest in the analysis of nonlinear time series data. The editors and peer reviewers of this work have attempted to minimize the problems ofmaintaining communication between the different scientific fields. The result is a collection of interrelated papers that highlight current areas of research in statistics that might have particular applicability to nonlinear dynamics and new methodology and open data analysis problems in nonlinear dynamicsthat might find their way into the toolkits and research interests of statisticians. Features: A survey of state-of-the-art developments in nonlinear dynamics time series analysis with open statistical problems and areas for further research. Contributions by statisticians to understanding and improving modern techniques commonly associated with nonlinear time series analysis, such as surrogate data methods and estimation of local Lyapunov exponents. Starting point for both scientists andstatisticians who want to explore the field. Expositions that are readable to scientists outside the featured fields of specialization. Information for our distributors: Titles in this series are copublished with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario,Canada).
Distinguishing chaoticity from regularity in deterministic dynamical systems and specifying the subspace of the phase space in which instabilities are expected to occur is of utmost importance in as disparate areas as astronomy, particle physics and climate dynamics. To address these issues there exists a plethora of methods for chaos detection and predictability. The most commonly employed technique for investigating chaotic dynamics, i.e. the computation of Lyapunov exponents, however, may suffer a number of problems and drawbacks, for example when applied to noisy experimental data. In the last two decades, several novel methods have been developed for the fast and reliable determination of the regular or chaotic nature of orbits, aimed at overcoming the shortcomings of more traditional techniques. This set of lecture notes and tutorial reviews serves as an introduction to and overview of modern chaos detection and predictability techniques for graduate students and non-specialists. The book covers theoretical and computational aspects of traditional methods to calculate Lyapunov exponents, as well as of modern techniques like the Fast (FLI), the Orthogonal (OFLI) and the Relative (RLI) Lyapunov Indicators, the Mean Exponential Growth factor of Nearby Orbits (MEGNO), the Smaller (SALI) and the Generalized (GALI) Alignment Index and the ‘0-1’ test for chaos.