Analysis of Hamiltonian PDEs

Analysis of Hamiltonian PDEs

Author: Sergej B. Kuksin

Publisher: Clarendon Press

Published: 2000

Total Pages: 228

ISBN-13: 9780198503958

DOWNLOAD EBOOK

For the last 20-30 years, interest among mathematicians and physicists in infinite-dimensional Hamiltonian systems and Hamiltonian partial differential equations has been growing strongly, and many papers and a number of books have been written on integrable Hamiltonian PDEs. During the last decade though, the interest has shifted steadily towards non-integrable Hamiltonian PDEs. Here, not algebra but analysis and symplectic geometry are the appropriate analysing tools. The present book is the first one to use this approach to Hamiltonian PDEs and present a complete proof of the "KAM for PDEs" theorem. It will be an invaluable source of information for postgraduate mathematics and physics students and researchers.


Nonlinear Oscillations of Hamiltonian PDEs

Nonlinear Oscillations of Hamiltonian PDEs

Author: Massimiliano Berti

Publisher: Springer Science & Business Media

Published: 2007-10-01

Total Pages: 191

ISBN-13: 0817646809

DOWNLOAD EBOOK

Many partial differential equations (PDEs) that arise in physics can be viewed as infinite-dimensional Hamiltonian systems. This monograph presents recent existence results of nonlinear oscillations of Hamiltonian PDEs, particularly of periodic solutions for completely resonant nonlinear wave equations. The text serves as an introduction to research in this fascinating and rapidly growing field. Graduate students and researchers interested in variational techniques and nonlinear analysis applied to Hamiltonian PDEs will find inspiration in the book.


Hamiltonian Dynamical Systems and Applications

Hamiltonian Dynamical Systems and Applications

Author: Walter Craig

Publisher: Springer Science & Business Media

Published: 2008-02-17

Total Pages: 450

ISBN-13: 1402069642

DOWNLOAD EBOOK

This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems. Applications are also presented to several important areas of research, including problems in classical mechanics, continuum mechanics, and partial differential equations.


Hamiltonian Partial Differential Equations and Applications

Hamiltonian Partial Differential Equations and Applications

Author: Philippe Guyenne

Publisher: Springer

Published: 2015-09-11

Total Pages: 453

ISBN-13: 149392950X

DOWNLOAD EBOOK

This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves. The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations.


Functional Analysis, Sobolev Spaces and Partial Differential Equations

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Author: Haim Brezis

Publisher: Springer Science & Business Media

Published: 2010-11-02

Total Pages: 600

ISBN-13: 0387709142

DOWNLOAD EBOOK

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.


Partial Differential Equations and Functional Analysis

Partial Differential Equations and Functional Analysis

Author: Erik Koelink

Publisher: Springer Science & Business Media

Published: 2006-08-18

Total Pages: 294

ISBN-13: 3764376015

DOWNLOAD EBOOK

Capturing the state of the art of the interplay between partial differential equations, functional analysis, maximal regularity, and probability theory, this volume was initiated at the Delft conference on the occasion of the retirement of Philippe Clément. It will be of interest to researchers in PDEs and functional analysis.


Partial Differential Equations and Functional Analysis

Partial Differential Equations and Functional Analysis

Author: Andrew Comech

Publisher: Springer Nature

Published: 2023-11-15

Total Pages: 334

ISBN-13: 303133681X

DOWNLOAD EBOOK

Mark Vishik was one of the prominent figures in the theory of partial differential equations. His ground-breaking contributions were instrumental in integrating the methods of functional analysis into this theory. The book is based on the memoirs of his friends and students, as well as on the recollections of Mark Vishik himself, and contains a detailed description of his biography: childhood in Lwów, his connections with the famous Lwów school of Stefan Banach, a difficult several year long journey from Lwów to Tbilisi after the Nazi assault in June 1941, going to Moscow and forming his own school of differential equations, whose central role was played by the famous Vishik Seminar at the Department of Mechanics and Mathematics at Moscow State University. The reader is introduced to a number of remarkable scientists whose lives intersected with Vishik’s, including S. Banach, J. Schauder, I. N. Vekua, N. I. Muskhelishvili, L. A. Lyusternik, I. G. Petrovskii, S. L. Sobolev, I. M. Gelfand, M. G. Krein, A. N. Kolmogorov, N. I. Akhiezer, J. Leray, J.-L. Lions, L. Schwartz, L. Nirenberg, and many others. The book also provides a detailed description of the main research directions of Mark Vishik written by his students and colleagues, as well as several reviews of the recent development in these directions.


Attractors of Hamiltonian Nonlinear Partial Differential Equations

Attractors of Hamiltonian Nonlinear Partial Differential Equations

Author: Alexander Komech

Publisher: Cambridge University Press

Published: 2021-09-30

Total Pages:

ISBN-13: 100903605X

DOWNLOAD EBOOK

This monograph is the first to present the theory of global attractors of Hamiltonian partial differential equations. A particular focus is placed on the results obtained in the last three decades, with chapters on the global attraction to stationary states, to solitons, and to stationary orbits. The text includes many physically relevant examples and will be of interest to graduate students and researchers in both mathematics and physics. The proofs involve novel applications of methods of harmonic analysis, including Tauberian theorems, Titchmarsh's convolution theorem, and the theory of quasimeasures. As well as the underlying theory, the authors discuss the results of numerical simulations and formulate open problems to prompt further research.


Hamiltonian Dynamics - Theory and Applications

Hamiltonian Dynamics - Theory and Applications

Author: Giancarlo Benettin

Publisher: Springer

Published: 2005-01-14

Total Pages: 187

ISBN-13: 3540315411

DOWNLOAD EBOOK

This volume compiles three series of lectures on applications of the theory of Hamiltonian systems, contributed by some of the specialists in the field. The aim is to describe the state of the art for some interesting problems, such as the Hamiltonian theory for infinite-dimensional Hamiltonian systems, including KAM theory, the recent extensions of the theory of adiabatic invariants, and the phenomena related to stability over exponentially long times of Nekhoroshev's theory. The books may serve as an excellent basis for young researchers, who will find here a complete and accurate exposition of recent original results and many hints for further investigation.