A Design and Analysis Approach for Drag Reduction on Aircraft with Adaptive Lifting Surfaces

A Design and Analysis Approach for Drag Reduction on Aircraft with Adaptive Lifting Surfaces

Author:

Publisher:

Published: 2004

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Adaptive lifting surfaces, which can be tailored for different flight conditions, have been shown to be beneficial for drag reduction when compared with conventional non-adaptive surfaces. Applying multiple trailing-edge flaps along the wing span allows for the redistribution of lift to suit different flight conditions. The current approach uses the trailing-edge flap distribution to reduce both induced- and profile- components of drag with a trim constraint. Induced drag is reduced by optimally redistributing the lift between the lifting surfaces and along the span of each surface. Profile drag is reduced through the use of natural laminar flow airfoils, which maintain distinct low-drag-ranges (drag buckets) surrounding design lift values. The low-drag-ranges can be extended to include off-design values through small flap deflections, similar to cruise flaps. Trim is constrained for a given static margin by considering longitudinal pitching moment contributions from changes in airfoil section due to individual flap deflections, and from the redistribution of fore-and-aft lift due to combination of flap deflections. The approach uses the concept of basic and additional lift to linearlize the problem, which allows for standard constrained-minimization theory to be employed for determining optimal flap-angle solutions. The resulting expressions for optimal flap-angle solutions are presented as simple matrix equations. This work presents a design and analysis approach which is used to produce flap-angle solutions that independently reduce induced, profile, and total drag. Total drag is defined to be the sum of the induced- and profile-components of drag. The general drag reduction approach is adapted for each specific situation to develop specific drag reduction schemes that are applied to single- and multiple-surface configurations. Successful results show that, for the application of the induced drag reduction schemes on a tailless aircraft, near-elliptical lift dist.


Masters Theses in the Pure and Applied Sciences

Masters Theses in the Pure and Applied Sciences

Author: Wade H. Shafer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 430

ISBN-13: 1461573947

DOWNLOAD EBOOK

Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Oata Analysis and Synthesis (CINOAS) * at Purdue. University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all con cerned if the printing and distribution of the volumes were handled by an interna tional publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Cor poration of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 33 (thesis year 1988) a total of 13,273 theses titles from 23 Canadian and 1 85 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this important annual reference work. While Volume 33 reports theses submitted in 1988, on occasion, certain univer sities do report theses submitted in previous years but not reported at the time.


Introduction to Aircraft Flight Mechanics

Introduction to Aircraft Flight Mechanics

Author: Thomas R. Yechout

Publisher: AIAA

Published: 2003

Total Pages: 666

ISBN-13: 9781600860782

DOWNLOAD EBOOK

Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.