Analysis for Diffusion Processes on Riemannian Manifolds

Analysis for Diffusion Processes on Riemannian Manifolds

Author: Feng-Yu Wang

Publisher: World Scientific

Published: 2014

Total Pages: 392

ISBN-13: 9814452653

DOWNLOAD EBOOK

Stochastic analysis on Riemannian manifolds without boundary has been well established. However, the analysis for reflecting diffusion processes and sub-elliptic diffusion processes is far from complete. This book contains recent advances in this direction along with new ideas and efficient arguments, which are crucial for further developments. Many results contained here (for example, the formula of the curvature using derivatives of the semigroup) are new among existing monographs even in the case without boundary.


Diffusion Processes and Related Problems in Analysis, Volume II

Diffusion Processes and Related Problems in Analysis, Volume II

Author: V. Wihstutz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 344

ISBN-13: 1461203899

DOWNLOAD EBOOK

During the weekend of March 16-18, 1990 the University of North Carolina at Charlotte hosted a conference on the subject of stochastic flows, as part of a Special Activity Month in the Department of Mathematics. This conference was supported jointly by a National Science Foundation grant and by the University of North Carolina at Charlotte. Originally conceived as a regional conference for researchers in the Southeastern United States, the conference eventually drew participation from both coasts of the U. S. and from abroad. This broad-based par ticipation reflects a growing interest in the viewpoint of stochastic flows, particularly in probability theory and more generally in mathematics as a whole. While the theory of deterministic flows can be considered classical, the stochastic counterpart has only been developed in the past decade, through the efforts of Harris, Kunita, Elworthy, Baxendale and others. Much of this work was done in close connection with the theory of diffusion processes, where dynamical systems implicitly enter probability theory by means of stochastic differential equations. In this regard, the Charlotte conference served as a natural outgrowth of the Conference on Diffusion Processes, held at Northwestern University, Evanston Illinois in October 1989, the proceedings of which has now been published as Volume I of the current series. Due to this natural flow of ideas, and with the assistance and support of the Editorial Board, it was decided to organize the present two-volume effort.


Stochastic Analysis on Manifolds

Stochastic Analysis on Manifolds

Author: Elton P. Hsu

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 297

ISBN-13: 0821808028

DOWNLOAD EBOOK

Mainly from the perspective of a probabilist, Hsu shows how stochastic analysis and differential geometry can work together for their mutual benefit. He writes for researchers and advanced graduate students with a firm foundation in basic euclidean stochastic analysis, and differential geometry. He does not include the exercises usual to such texts, but does provide proofs throughout that invite readers to test their understanding. Annotation copyrighted by Book News Inc., Portland, OR.


An Introduction to the Analysis of Paths on a Riemannian Manifold

An Introduction to the Analysis of Paths on a Riemannian Manifold

Author: Daniel W. Stroock

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 290

ISBN-13: 0821838393

DOWNLOAD EBOOK

Hoping to make the text more accessible to readers not schooled in the probabalistic tradition, Stroock (affiliation unspecified) emphasizes the geometric over the stochastic analysis of differential manifolds. Chapters deconstruct Brownian paths, diffusions in Euclidean space, intrinsic and extrinsic Riemannian geometry, Bocher's identity, and the bundle of orthonormal frames. The volume humbly concludes with an "admission of defeat" in regard to recovering the Li-Yau basic differential inequality. Annotation copyrighted by Book News, Inc., Portland, OR.


Harnack Inequalities for Stochastic Partial Differential Equations

Harnack Inequalities for Stochastic Partial Differential Equations

Author: Feng-Yu Wang

Publisher: Springer Science & Business Media

Published: 2013-08-13

Total Pages: 135

ISBN-13: 1461479347

DOWNLOAD EBOOK

​In this book the author presents a self-contained account of Harnack inequalities and applications for the semigroup of solutions to stochastic partial and delayed differential equations. Since the semigroup refers to Fokker-Planck equations on infinite-dimensional spaces, the Harnack inequalities the author investigates are dimension-free. This is an essentially different point from the above mentioned classical Harnack inequalities. Moreover, the main tool in the study is a new coupling method (called coupling by change of measures) rather than the usual maximum principle in the current literature.


On the Geometry of Diffusion Operators and Stochastic Flows

On the Geometry of Diffusion Operators and Stochastic Flows

Author: K.D. Elworthy

Publisher: Springer

Published: 2007-01-05

Total Pages: 121

ISBN-13: 3540470220

DOWNLOAD EBOOK

Stochastic differential equations, and Hoermander form representations of diffusion operators, can determine a linear connection associated to the underlying (sub)-Riemannian structure. This is systematically described, together with its invariants, and then exploited to discuss qualitative properties of stochastic flows, and analysis on path spaces of compact manifolds with diffusion measures. This should be useful to stochastic analysts, especially those with interests in stochastic flows, infinite dimensional analysis, or geometric analysis, and also to researchers in sub-Riemannian geometry. A basic background in differential geometry is assumed, but the construction of the connections is very direct and itself gives an intuitive and concrete introduction. Knowledge of stochastic analysis is also assumed for later chapters.


New Trends in Stochastic Analysis and Related Topics

New Trends in Stochastic Analysis and Related Topics

Author: Huaizhong Zhao

Publisher: World Scientific

Published: 2012

Total Pages: 458

ISBN-13: 9814360910

DOWNLOAD EBOOK

The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.


Stochastic Partial Differential Equations and Related Fields

Stochastic Partial Differential Equations and Related Fields

Author: Andreas Eberle

Publisher: Springer

Published: 2018-07-03

Total Pages: 565

ISBN-13: 3319749293

DOWNLOAD EBOOK

This Festschrift contains five research surveys and thirty-four shorter contributions by participants of the conference ''Stochastic Partial Differential Equations and Related Fields'' hosted by the Faculty of Mathematics at Bielefeld University, October 10–14, 2016. The conference, attended by more than 140 participants, including PostDocs and PhD students, was held both to honor Michael Röckner's contributions to the field on the occasion of his 60th birthday and to bring together leading scientists and young researchers to present the current state of the art and promising future developments. Each article introduces a well-described field related to Stochastic Partial Differential Equations and Stochastic Analysis in general. In particular, the longer surveys focus on Dirichlet forms and Potential theory, the analysis of Kolmogorov operators, Fokker–Planck equations in Hilbert spaces, the theory of variational solutions to stochastic partial differential equations, singular stochastic partial differential equations and their applications in mathematical physics, as well as on the theory of regularity structures and paracontrolled distributions. The numerous research surveys make the volume especially useful for graduate students and researchers who wish to start work in the above-mentioned areas, or who want to be informed about the current state of the art.


Probability Towards 2000

Probability Towards 2000

Author: L. Accardi

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 370

ISBN-13: 1461222249

DOWNLOAD EBOOK

Senior probabilists from around the world with widely differing specialities gave their visions of the state of their specialty, why they think it is important, and how they think it will develop in the new millenium. The volume includes papers given at a symposium at Columbia University in 1995, but papers from others not at the meeting were added to broaden the coverage of areas. All papers were refereed.


Stochastic Processes

Stochastic Processes

Author: Pierre Del Moral

Publisher: CRC Press

Published: 2017-02-24

Total Pages: 1026

ISBN-13: 1498701868

DOWNLOAD EBOOK

Unlike traditional books presenting stochastic processes in an academic way, this book includes concrete applications that students will find interesting such as gambling, finance, physics, signal processing, statistics, fractals, and biology. Written with an important illustrated guide in the beginning, it contains many illustrations, photos and pictures, along with several website links. Computational tools such as simulation and Monte Carlo methods are included as well as complete toolboxes for both traditional and new computational techniques.