Tensor Analysis and Continuum Mechanics

Tensor Analysis and Continuum Mechanics

Author: Wilhelm Flügge

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 215

ISBN-13: 3642883826

DOWNLOAD EBOOK

Through several centuries there has been a lively interaction between mathematics and mechanics. On the one side, mechanics has used mathemat ics to formulate the basic laws and to apply them to a host of problems that call for the quantitative prediction of the consequences of some action. On the other side, the needs of mechanics have stimulated the development of mathematical concepts. Differential calculus grew out of the needs of Newtonian dynamics; vector algebra was developed as a means . to describe force systems; vector analysis, to study velocity fields and force fields; and the calcul~s of variations has evolved from the energy principles of mechan ics. In recent times the theory of tensors has attracted the attention of the mechanics people. Its very name indicates its origin in the theory of elasticity. For a long time little use has been made of it in this area, but in the last decade its usefulness in the mechanics of continuous media has been widely recognized. While the undergraduate textbook literature in this country was becoming "vectorized" (lagging almost half a century behind the development in Europe), books dealing with various aspects of continuum mechanics took to tensors like fish to water. Since many authors were not sure whether their readers were sufficiently familiar with tensors~ they either added' a chapter on tensors or wrote a separate book on the subject.


Tensor Analysis and Continuum Mechanics

Tensor Analysis and Continuum Mechanics

Author: Y.R. Talpaert

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 602

ISBN-13: 9401599882

DOWNLOAD EBOOK

This book is designed for students in engineering, physics and mathematics. The material can be taught from the beginning of the third academic year. It could also be used for self study, given its pedagogical structure and the numerous solved problems which prepare for modem physics and technology. One of the original aspects of this work is the development together of the basic theory of tensors and the foundations of continuum mechanics. Why two books in one? Firstly, Tensor Analysis provides a thorough introduction of intrinsic mathematical entities, called tensors, which is essential for continuum mechanics. This way of proceeding greatly unifies the various subjects. Only some basic knowledge of linear algebra is necessary to start out on the topic of tensors. The essence of the mathematical foundations is introduced in a practical way. Tensor developments are often too abstract, since they are either aimed at algebraists only, or too quickly applied to physicists and engineers. Here a good balance has been found which allows these extremes to be brought closer together. Though the exposition of tensor theory forms a subject in itself, it is viewed not only as an autonomous mathematical discipline, but as a preparation for theories of physics and engineering. More specifically, because this part of the work deals with tensors in general coordinates and not solely in Cartesian coordinates, it will greatly help with many different disciplines such as differential geometry, analytical mechanics, continuum mechanics, special relativity, general relativity, cosmology, electromagnetism, quantum mechanics, etc ..


Continuum Damage Mechanics

Continuum Damage Mechanics

Author: Sumio Murakami

Publisher: Springer Science & Business Media

Published: 2012-02-24

Total Pages: 420

ISBN-13: 9400726651

DOWNLOAD EBOOK

Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry. This, in turn, has caused more interest in continuum damage mechanics and its engineering applications. This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook. The book consists of two parts and an appendix. Part I is concerned with the foundation of continuum damage mechanics. Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2. In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application to the modeling of the constitutive and the evolution equations of damaged materials are descried as a systematic basis for the subsequent development throughout the book. Part II describes the application of the fundamental theories developed in Part I to typical damage and fracture problems encountered in various fields of the current engineering. Important engineering aspects of elastic-plastic or ductile damage, their damage mechanics modeling and their further refinement are first discussed in Chapter 6. Chapters 7 and 8 are concerned with the modeling of fatigue, creep, creep-fatigue and their engineering application. Damage mechanics modeling of complicated crack closure behavior in elastic-brittle and composite materials are discussed in Chapters 9 and 10. In Chapter 11, applicability of the local approach to fracture by means of damage mechanics and finite element method, and the ensuing mathematical and numerical problems are briefly discussed. A proper understanding of the subject matter requires knowledge of tensor algebra and tensor calculus. At the end of this book, therefore, the foundations of tensor analysis are presented in the Appendix, especially for readers with insufficient mathematical background, but with keen interest in this exciting field of mechanics.


Continuum Mechanics for Engineers

Continuum Mechanics for Engineers

Author: G. Thomas Mase

Publisher: CRC Press

Published: 2009-07-28

Total Pages: 400

ISBN-13: 1420085395

DOWNLOAD EBOOK

Continuum Mechanics for Engineers, Third Edition provides engineering students with a complete, concise, and accessible introduction to advanced engineering mechanics. The impetus for this latest edition was the need to suitably combine the introduction of continuum mechanics, linear and nonlinear elasticity, and viscoelasticity for a graduate-leve


Applications Of Tensor Analysis In Continuum Mechanics

Applications Of Tensor Analysis In Continuum Mechanics

Author: Victor A Eremeyev

Publisher: World Scientific

Published: 2018-07-10

Total Pages: 426

ISBN-13: 9813238984

DOWNLOAD EBOOK

'A strong point of this book is its coverage of tensor theory, which is herein deemed both more readable and more substantial than many other historic continuum mechanics books. The book is self-contained. It serves admirably as a reference resource on fundamental principles and equations of tensor mathematics applied to continuum mechanics. Exercises and problem sets are useful for teaching … The book is highly recommended as both a graduate textbook and a reference work for students and more senior researchers involved in theoretical and mathematical modelling of continuum mechanics of materials. Key concepts are well described in the text and are supplemented by informative exercises and problem sets with solutions, and comprehensive Appendices provide important equations for ease of reference.'Contemporary PhysicsA tensor field is a tensor-valued function of position in space. The use of tensor fields allows us to present physical laws in a clear, compact form. A byproduct is a set of simple and clear rules for the representation of vector differential operators such as gradient, divergence, and Laplacian in curvilinear coordinate systems. The tensorial nature of a quantity permits us to formulate transformation rules for its components under a change of basis. These rules are relatively simple and easily grasped by any engineering student familiar with matrix operators in linear algebra. More complex problems arise when one considers the tensor fields that describe continuum bodies. In this case general curvilinear coordinates become necessary. The principal basis of a curvilinear system is constructed as a set of vectors tangent to the coordinate lines. Another basis, called the dual basis, is also constructed in a special manner. The existence of these two bases is responsible for the mysterious covariant and contravariant terminology encountered in tensor discussions.This book provides a clear, concise, and self-contained treatment of tensors and tensor fields. It covers the foundations of linear elasticity, shell theory, and generalized continuum media, offers hints, answers, and full solutions for many of the problems and exercises, and Includes a handbook-style summary of important tensor formulas.The book can be useful for beginners who are interested in the basics of tensor calculus. It also can be used by experienced readers who seek a comprehensive review on applications of the tensor calculus in mechanics.


Continuum Mechanics

Continuum Mechanics

Author: Fridtjov Irgens

Publisher: Springer Science & Business Media

Published: 2008-01-10

Total Pages: 667

ISBN-13: 3540742980

DOWNLOAD EBOOK

This book presents an introduction into the entire science of Continuum Mechanics in three parts. The presentation is modern and comprehensive. Its introduction into tensors is very gentle. The book contains many examples and exercises, and is intended for scientists, practitioners and students of mechanics.


Continuum Methods of Physical Modeling

Continuum Methods of Physical Modeling

Author: Kolumban Hutter

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 645

ISBN-13: 3662064022

DOWNLOAD EBOOK

The book unifies classical continuum mechanics and turbulence modeling, i.e. the same fundamental concepts are used to derive model equations for material behaviour and turbulence closure and complements these with methods of dimensional analysis. The intention is to equip the reader with the ability to understand the complex nonlinear modeling in material behaviour and turbulence closure as well as to derive or invent his own models. Examples are mostly taken from environmental physics and geophysics.


Worked Examples in Nonlinear Continuum Mechanics for Finite Element Analysis

Worked Examples in Nonlinear Continuum Mechanics for Finite Element Analysis

Author: Javier Bonet

Publisher: Cambridge University Press

Published: 2012-08-02

Total Pages: 137

ISBN-13: 1139561308

DOWNLOAD EBOOK

Many processes in materials science and engineering, such as the load deformation behaviour of certain structures, exhibit nonlinear characteristics. The computer simulation of such processes therefore requires a deep understanding of both the theoretical aspects of nonlinearity and the associated computational techniques. This book provides a complete set of exercises and solutions in the field of theoretical and computational nonlinear continuum mechanics and is the perfect companion to Nonlinear Continuum Mechanics for Finite Element Analysis, where the authors set out the theoretical foundations of the subject. It employs notation consistent with the theory book and serves as a great resource to students, researchers and those in industry interested in gaining confidence by practising through examples. Instructors of the subject will also find the book indispensable in aiding student learning.


Tensor Algebra and Tensor Analysis for Engineers

Tensor Algebra and Tensor Analysis for Engineers

Author: Mikhail Itskov

Publisher: Springer Science & Business Media

Published: 2009-04-30

Total Pages: 253

ISBN-13: 3540939075

DOWNLOAD EBOOK

There is a large gap between engineering courses in tensor algebra on one hand, and the treatment of linear transformations within classical linear algebra on the other. This book addresses primarily engineering students with some initial knowledge of matrix algebra. Thereby, mathematical formalism is applied as far as it is absolutely necessary. Numerous exercises provided in the book are accompanied by solutions enabling autonomous study. The last chapters deal with modern developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics and might therefore be of high interest for PhD-students and scientists working in this area.