Analogue Quantum Simulation

Analogue Quantum Simulation

Author: Dominik Hangleiter

Publisher: Springer Nature

Published: 2022-01-21

Total Pages: 153

ISBN-13: 3030872165

DOWNLOAD EBOOK

This book presents fresh insights into analogue quantum simulation. It argues that these simulations are a new instrument of science. They require a bespoke philosophical analysis, sensitive to both the similarities to and the differences with conventional scientific practices such as analogical argument, experimentation, and classical simulation. The analysis situates the various forms of analogue quantum simulation on the methodological map of modern science. In doing so, it clarifies the functions that analogue quantum simulation serves in scientific practice. To this end, the authors introduce a number of important terminological distinctions. They establish that analogue quantum ‘computation' and ‘emulation' are distinct scientific practices and lead to distinct forms of scientific understanding. The authors also demonstrate the normative value of the computation vs. emulation distinction at both an epistemic and a pragmatic level. The volume features a range of detailed case studies focusing on: i) cold atom computation of many-body localisation and the Higgs mode; ii) photonic emulation of quantum effects in biological systems; and iii) emulation of Hawing radiation in dispersive optical media. Overall, readers will discover a normative framework to isolate and support the goals of scientists undertaking analogue quantum simulation and emulation. This framework will prove useful to both working scientists and philosophers of science interested in cutting-edge scientific practice.


Reliability of Analog Quantum Simulation

Reliability of Analog Quantum Simulation

Author:

Publisher:

Published: 2017

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. Specifically, how do we know whether an analog simulation of a quantum model will produce predictions that agree with the ideal model in the presence of inevitable imperfections? At the same time there is a widely held expectation that certain quantum simulation questions will be robust to errors and perturbations in the underlying hardware. Resolving these two points of view is a critical step in making the most of this promising technology. In this paper we formalize the notion of AQS reliability by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach naturally reveals the importance of model symmetries in dictating the robust properties. Finally, to demonstrate the approach, we characterize the robust features of a variety of quantum many-body models.


Quantum Circuit Simulation

Quantum Circuit Simulation

Author: George F. Viamontes

Publisher: Springer Science & Business Media

Published: 2009-08-04

Total Pages: 193

ISBN-13: 9048130654

DOWNLOAD EBOOK

Quantum Circuit Simulation covers the fundamentals of linear algebra and introduces basic concepts of quantum physics needed to understand quantum circuits and algorithms. It requires only basic familiarity with algebra, graph algorithms and computer engineering. After introducing necessary background, the authors describe key simulation techniques that have so far been scattered throughout the research literature in physics, computer science, and computer engineering. Quantum Circuit Simulation also illustrates the development of software for quantum simulation by example of the QuIDDPro package, which is freely available and can be used by students of quantum information as a "quantum calculator."


Detector Readout of an Analog Quantum Simulator

Detector Readout of an Analog Quantum Simulator

Author: Alessandro Luis Monteros

Publisher:

Published: 2021

Total Pages: 264

ISBN-13:

DOWNLOAD EBOOK

An important question in quantum simulation is the certication of the quantum simulators with proper readout. We examine how a detector's correlator changes when coupled to a quantum simulator using a diagrammatic technique. From the correlation functions calculated from the diagrammatic technique, we can determine whether or not reliable detection of the simulator's correlator can be achieved. When reliable detection is not possible due to detector back-action, we examine the situations when the back-action can be negligible. In particular, we study a cavity detector coupled to a Transverse Field Ising Model. We use a similar diagrammatic technique to study the interaction between a cavity and a qubit in the ultra strong coupling regime. This cavity-qubit system is of importance in quantum computing and is a fundamental model in cavity QED. Ultrastrong coupling strength enables novel approaches for quantum logic operations. Our approach provides a fresh perspective on calculating the transmission spectra and the imacpt of the ultrastrongly coupled cavity on the qubit behavior.


Quantum Computing

Quantum Computing

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2019-04-27

Total Pages: 273

ISBN-13: 030947969X

DOWNLOAD EBOOK

Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.


Quantum simulation experiments with superconducting circuits

Quantum simulation experiments with superconducting circuits

Author: Braumüller, Jochen

Publisher: KIT Scientific Publishing

Published: 2018-06-14

Total Pages: 166

ISBN-13: 3731507803

DOWNLOAD EBOOK

While the universal quantum computer seems not in reach for the near future, this work focusses on analog quantum simulation of intriguing quantum models of light-matter interactions, with the goal of achieving a computational speed-up as compared to classical hardware. Existing building blocks of quantum hardware are used from superconducting circuits, that have proven to be a very suitable experimental platform for the implementation of model Hamiltonians at a high degree of controllability.


Quantum Simulation Experiments With Superconducting Circuits

Quantum Simulation Experiments With Superconducting Circuits

Author: Jochen Braumüller

Publisher:

Published: 2020-10-09

Total Pages: 158

ISBN-13: 9781013279263

DOWNLOAD EBOOK

While the universal quantum computer seems not in reach for the near future, this work focusses on analog quantum simulation of intriguing quantum models of light-matter interactions, with the goal of achieving a computational speed-up as compared to classical hardware. Existing building blocks of quantum hardware are used from superconducting circuits, that have proven to be a very suitable experimental platform for the implementation of model Hamiltonians at a high degree of controllability. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.


Neural-Network Simulation of Strongly Correlated Quantum Systems

Neural-Network Simulation of Strongly Correlated Quantum Systems

Author: Stefanie Czischek

Publisher: Springer Nature

Published: 2020-08-27

Total Pages: 205

ISBN-13: 3030527158

DOWNLOAD EBOOK

Quantum systems with many degrees of freedom are inherently difficult to describe and simulate quantitatively. The space of possible states is, in general, exponentially large in the number of degrees of freedom such as the number of particles it contains. Standard digital high-performance computing is generally too weak to capture all the necessary details, such that alternative quantum simulation devices have been proposed as a solution. Artificial neural networks, with their high non-local connectivity between the neuron degrees of freedom, may soon gain importance in simulating static and dynamical behavior of quantum systems. Particularly promising candidates are neuromorphic realizations based on analog electronic circuits which are being developed to capture, e.g., the functioning of biologically relevant networks. In turn, such neuromorphic systems may be used to measure and control real quantum many-body systems online. This thesis lays an important foundation for the realization of quantum simulations by means of neuromorphic hardware, for using quantum physics as an input to classical neural nets and, in turn, for using network results to be fed back to quantum systems. The necessary foundations on both sides, quantum physics and artificial neural networks, are described, providing a valuable reference for researchers from these different communities who need to understand the foundations of both.


Classical and Quantum Computation

Classical and Quantum Computation

Author: Alexei Yu. Kitaev

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 274

ISBN-13: 0821832298

DOWNLOAD EBOOK

An introduction to a rapidly developing topic: the theory of quantum computing. Following the basics of classical theory of computation, the book provides an exposition of quantum computation theory. In concluding sections, related topics, including parallel quantum computation, are discussed.


Quantum Simulators

Quantum Simulators

Author: T. Calarco

Publisher: IOS Press

Published: 2018-05-02

Total Pages: 270

ISBN-13: 1614998566

DOWNLOAD EBOOK

The last century has been characterized by the development of information theory and the consequent transformative impact of new technologies on societies around the world. It seems likely that the tremendous progress in nanoscience – the ability to manipulate microscopic systems at the level of a single atom – and the emergence of quantum information science, will be the key components of the next revolution; that of the new quantum technologies. Indeed, the ability to manipulate and control quantum systems has already found a variety of potential applications, ranging from the development of molecular nanoscale machines which exploit quantum coherence for their functioning, to metrological schemes where quantum effects are used to enhance the accuracy of measurement and detection systems to achieve higher statistical precision than is possible using purely classical approaches. This book presents the proceedings of the Enrico Fermi Summer School on Quantum Simulators (Course 198) held in Varenna, Italy, 22-27 July 2016. Topics covered included: cold atoms in optical lattices; trapped ions; solid state implementations; quantum many-body physics; quantum photonics; hybrid quantum systems; and transport phenomena. The book will be of interest to all those whose work is connected to the rapidly growing field of quantum technologies.