Analogue Gravity Phenomenology

Analogue Gravity Phenomenology

Author: Daniele Faccio

Publisher: Springer

Published: 2013-08-13

Total Pages: 452

ISBN-13: 331900266X

DOWNLOAD EBOOK

Analogue Gravity Phenomenology is a collection of contributions that cover a vast range of areas in physics, ranging from surface wave propagation in fluids to nonlinear optics. The underlying common aspect of all these topics, and hence the main focus and perspective from which they are explained here, is the attempt to develop analogue models for gravitational systems. The original and main motivation of the field is the verification and study of Hawking radiation from a horizon: the enabling feature is the possibility to generate horizons in the laboratory with a wide range of physical systems that involve a flow of one kind or another. The years around 2010 and onwards witnessed a sudden surge of experimental activity in this expanding field of research. However, building an expertise in analogue gravity requires the researcher to be equipped with a rather broad range of knowledge and interests. The aim of this book is to bring the reader up to date with the latest developments and provide the basic background required in order to appreciate the goals, difficulties, and success stories in the field of analogue gravity. Each chapter of the book treats a different topic explained in detail by the major experts for each specific discipline. The first chapters give an overview of black hole spacetimes and Hawking radiation before moving on to describe the large variety of analogue spacetimes that have been proposed and are currently under investigation. This introductory part is then followed by an in-depth description of what are currently the three most promising analogue spacetime settings, namely surface waves in flowing fluids, acoustic oscillations in Bose-Einstein condensates and electromagnetic waves in nonlinear optics. Both theory and experimental endeavours are explained in detail. The final chapters refer to other aspects of analogue gravity beyond the study of Hawking radiation, such as Lorentz invariance violations and Brownian motion in curved spacetimes, before concluding with a return to the origins of the field and a description of the available observational evidence for horizons in astrophysical black holes.


Quantum Analogues: From Phase Transitions to Black Holes and Cosmology

Quantum Analogues: From Phase Transitions to Black Holes and Cosmology

Author: William Unruh

Publisher: Springer

Published: 2007-04-14

Total Pages: 306

ISBN-13: 3540708596

DOWNLOAD EBOOK

Recently, analogies between laboratory physics (e.g. quantum optics and condensed matter) and gravitational/cosmological phenomena such as black holes have attracted an increasing interest. This book contains a series of selected lectures devoted to this new and rapidly developing field. Various analogies connecting (apparently) different areas in physics are presented in order to bridge the gap between them and to provide an alternative point of view.


Analogue Quantum Simulation

Analogue Quantum Simulation

Author: Dominik Hangleiter

Publisher: Springer Nature

Published: 2022-01-21

Total Pages: 153

ISBN-13: 3030872165

DOWNLOAD EBOOK

This book presents fresh insights into analogue quantum simulation. It argues that these simulations are a new instrument of science. They require a bespoke philosophical analysis, sensitive to both the similarities to and the differences with conventional scientific practices such as analogical argument, experimentation, and classical simulation. The analysis situates the various forms of analogue quantum simulation on the methodological map of modern science. In doing so, it clarifies the functions that analogue quantum simulation serves in scientific practice. To this end, the authors introduce a number of important terminological distinctions. They establish that analogue quantum ‘computation' and ‘emulation' are distinct scientific practices and lead to distinct forms of scientific understanding. The authors also demonstrate the normative value of the computation vs. emulation distinction at both an epistemic and a pragmatic level. The volume features a range of detailed case studies focusing on: i) cold atom computation of many-body localisation and the Higgs mode; ii) photonic emulation of quantum effects in biological systems; and iii) emulation of Hawing radiation in dispersive optical media. Overall, readers will discover a normative framework to isolate and support the goals of scientists undertaking analogue quantum simulation and emulation. This framework will prove useful to both working scientists and philosophers of science interested in cutting-edge scientific practice.


Fourteenth Marcel Grossmann Meeting, The: On Recent Developments In Theoretical And Experimental General Relativity, Astrophysics, And Relativistic Field Theories - Proceedings Of The Mg14 Meeting On General Relativity (In 4 Parts)

Fourteenth Marcel Grossmann Meeting, The: On Recent Developments In Theoretical And Experimental General Relativity, Astrophysics, And Relativistic Field Theories - Proceedings Of The Mg14 Meeting On General Relativity (In 4 Parts)

Author: Massimo Bianchi

Publisher: World Scientific

Published: 2017-10-13

Total Pages: 4784

ISBN-13: 9813226617

DOWNLOAD EBOOK

The four volumes of the proceedings of MG14 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 35 morning plenary talks over 6 days, 6 evening popular talks and 100 parallel sessions on 84 topics over 4 afternoons.Volume A contains plenary and review talks ranging from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theory, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics, including topics such as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star, pulsar and white dwarf astrophysics.The remaining volumes include parallel sessions which touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, white dwarfs, binary systems, radiative transfer, accretion disks, quasars, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, self-gravitating systems, gamma ray astronomy, cosmic rays and the history of general relativity.


Artificial Black Holes

Artificial Black Holes

Author: Mario Novello

Publisher: World Scientific

Published: 2002-10-04

Total Pages: 415

ISBN-13: 9814489603

DOWNLOAD EBOOK

Physicists are pondering on the possibility of simulating black holes in the laboratory by means of various “analog models”. These analog models, typically based on condensed matter physics, can be used to help us understand general relativity (Einstein's gravity); conversely, abstract techniques developed in general relativity can sometimes be used to help us understand certain aspects of condensed matter physics. This book contains 13 chapters — written by experts in general relativity, particle physics, and condensed matter physics — that explore various aspects of this two-way traffic.


The Ontology of Spacetime II

The Ontology of Spacetime II

Author:

Publisher: Elsevier

Published: 2008-06-17

Total Pages: 351

ISBN-13: 0080569889

DOWNLOAD EBOOK

The sixteen papers collected in this volume are expanded and revised versions of talks delivered at the Second International Conference on the Ontology of Spacetime, organized by the International Society for the Advanced Study of Spacetime (John Earman, President) at Concordia University (Montreal) from 9 to 11 June 2006. Most chapters are devoted to subjects directly relating to the ontology of spacetime. The book starts with four papers that discuss the ontological status of spacetime and the processes occurring in it from a point of view that is first of all conceptual and philosophical. The focus then slightly shifts in the five papers that follow, to considerations more directly involving technical considerations from relativity theory. After this, Time, Becoming and Change take centre stage in the next five papers. The book ends with two excursions into relatively uncharted territory: a consideration of the status of Kaluza-Klein theory, and an investigation of possible relations between the nature of spacetime and condensed matter physics, respectively. - Space and time in present-day physics and philosophy - Relatively low level of technicality, easily accessible - Introduction from scratch of the debates surrounding time - Broad spectrum of approaches, coherently represented


The Map and the Territory

The Map and the Territory

Author: Shyam Wuppuluri

Publisher: Springer

Published: 2018-02-13

Total Pages: 638

ISBN-13: 3319724789

DOWNLOAD EBOOK

This volume presents essays by pioneering thinkers including Tyler Burge, Gregory Chaitin, Daniel Dennett, Barry Mazur, Nicholas Humphrey, John Searle and Ian Stewart. Together they illuminate the Map/Territory Distinction that underlies at the foundation of the scientific method, thought and the very reality itself. It is imperative to distinguish Map from the Territory while analyzing any subject but we often mistake map for the territory. Meaning for the Reference. Computational tool for what it computes. Representations are handy and tempting that we often end up committing the category error of over-marrying the representation with what is represented, so much so that the distinction between the former and the latter is lost. This error that has its roots in the pedagogy often generates a plethora of paradoxes/confusions which hinder the proper understanding of the subject. What are wave functions? Fields? Forces? Numbers? Sets? Classes? Operators? Functions? Alphabets and Sentences? Are they a part of our map (theory/representation)? Or do they actually belong to the territory (Reality)? Researcher, like a cartographer, clothes (or creates?) the reality by stitching multitudes of maps that simultaneously co-exist. A simple apple, for example, can be analyzed from several viewpoints beginning with evolution and biology, all the way down its microscopic quantum mechanical components. Is there a reality (or a real apple) out there apart from these maps? How do these various maps interact/intermingle with each other to produce a coherent reality that we interact with? Or do they not? Does our brain uses its own internal maps to facilitate “physicist/mathematician” in us to construct the maps about the external territories in turn? If so, what is the nature of these internal maps? Are there meta-maps? Evolution definitely fences our perception and thereby our ability to construct maps, revealing to us only those aspects beneficial for our survival. But the question is, to what extent? Is there a way out of the metaphorical Platonic cave erected around us by the nature? While “Map is not the territory” as Alfred Korzybski remarked, join us in this journey to know more, while we inquire on the nature and the reality of the maps which try to map the reality out there. The book also includes a foreword by Sir Roger Penrose and an afterword by Dagfinn Follesdal.


Hawking Radiation: From Astrophysical Black Holes To Analogous Systems In Lab

Hawking Radiation: From Astrophysical Black Holes To Analogous Systems In Lab

Author: Francesco D Belgiorno

Publisher: World Scientific

Published: 2018-07-09

Total Pages: 340

ISBN-13: 9814508551

DOWNLOAD EBOOK

'The book can be a good introduction to research in the area of black hole physics. Also, it can serve as a source book for the established researcher in the field. The book contains an extensive bibliography the contents of which are amply cited throughout the text. The book well documents the historical development of the theory of Hawking radiation and related topics. The book is a worthwhile addition to the physics literature on a topic of considerable interest.'zbMATHThe aim of this book is to provide the reader with a guide to Hawking radiation through a dual approach to the problem. After an introductory chapter containing some basic knowledge about black holes and quantum field theory in curved spacetime, the first part of the book consists in a survey of methods for deriving and studying Hawking radiation from astrophysical black holes, from the original calculation by S W Hawking to the most recent contributions involving tunneling and gravitational anomalies. In the second part, we introduce analogue gravity, and we focus our attention to dielectric black hole systems, to which the studies of the present authors are devoted. The mutual interchange of knowledge between the aforementioned parts is addressed to render a more comprehensive picture of this very fascinating quantum phenomenon associated with black holes.


State Of The Quantum Vacuum, The: Casimir Physics In The 2020's

State Of The Quantum Vacuum, The: Casimir Physics In The 2020's

Author: Kimball A Milton

Publisher: World Scientific

Published: 2022-11-22

Total Pages: 393

ISBN-13: 9811266093

DOWNLOAD EBOOK

This review volume is intended to survey the field of quantum fluctuational phenomena induced by material bodies, which is commonly encompassed under the name of Casimir physics. H B G Casimir first discovered that zero-point fluctuations in the electromagnetic field caused an attractive force between closely separated metallic plates. Now — 75 years later — the field is burgeoning, with numerous experimental verifications and applications to practical devices starting to emerge.In this book, new ideas about Casimir physics are brought to bear on such diverse subjects as cosmology, where the Casimir energy may explain the dark energy that causes the cosmic repulsion, and nonstatic regimes, such as Casimir or quantum friction. Unsolved problems, including divergences in Casimir self-energies, the meaning of local energy densities in inhomogeneous backgrounds, and discrepancies between theory and experiment, are treated in some detail. It is hoped that this collection of papers will serve as an introduction to the field for newcomers to the subject, and that it will inspire a new burst of research into the nature of the quantum vacuum.


Information & Experimental Knowledge

Information & Experimental Knowledge

Author: James Mattingly

Publisher: University of Chicago Press

Published: 2021-12-13

Total Pages: 373

ISBN-13: 022680478X

DOWNLOAD EBOOK

An ambitious new model of experimentation that will reorient our understanding of the key features of experimental practice. What is experimental knowledge, and how do we get it? While there is general agreement that experiment is a crucial source of scientific knowledge, how experiment generates that knowledge is far more contentious. In this book, philosopher of science James Mattingly explains how experiments function. Specifically, he discusses what it is about experimental practice that transforms observations of what may be very localized, particular, isolated systems into what may be global, general, integrated empirical knowledge. Mattingly argues that the purpose of experimentation is the same as the purpose of any other knowledge-generating enterprise—to change the state of information of the knower. This trivial-seeming point has a non-trivial consequence: to understand a knowledge-generating enterprise, we should follow the flow of information. Therefore, the account of experimental knowledge Mattingly provides is based on understanding how information flows in experiments: what facilitates that flow, what hinders it, and what characteristics allow it to flow from system to system, into the heads of researchers, and finally into our store of scientific knowledge.