Computing Highly Oscillatory Integrals

Computing Highly Oscillatory Integrals

Author: Alfredo Deano

Publisher: SIAM

Published: 2018-01-01

Total Pages: 207

ISBN-13: 1611975123

DOWNLOAD EBOOK

Highly oscillatory phenomena range across numerous areas in science and engineering and their computation represents a difficult challenge. A case in point is integrals of rapidly oscillating functions in one or more variables. The quadrature of such integrals has been historically considered very demanding. Research in the past 15 years (in which the authors played a major role) resulted in a range of very effective and affordable algorithms for highly oscillatory quadrature. This is the only monograph bringing together the new body of ideas in this area in its entirety. The starting point is that approximations need to be analyzed using asymptotic methods rather than by more standard polynomial expansions. As often happens in computational mathematics, once a phenomenon is understood from a mathematical standpoint, effective algorithms follow. As reviewed in this monograph, we now have at our disposal a number of very effective quadrature methods for highly oscillatory integrals--Filon-type and Levin-type methods, methods based on steepest descent, and complex-valued Gaussian quadrature. Their understanding calls for a fairly varied mathematical toolbox--from classical numerical analysis, approximation theory, and theory of orthogonal polynomials all the way to asymptotic analysis--yet this understanding is the cornerstone of efficient algorithms.


Geometric Integrators for Differential Equations with Highly Oscillatory Solutions

Geometric Integrators for Differential Equations with Highly Oscillatory Solutions

Author: Xinyuan Wu

Publisher: Springer Nature

Published: 2021-09-28

Total Pages: 507

ISBN-13: 981160147X

DOWNLOAD EBOOK

The idea of structure-preserving algorithms appeared in the 1980's. The new paradigm brought many innovative changes. The new paradigm wanted to identify the long-time behaviour of the solutions or the existence of conservation laws or some other qualitative feature of the dynamics. Another area that has kept growing in importance within Geometric Numerical Integration is the study of highly-oscillatory problems: problems where the solutions are periodic or quasiperiodic and have to be studied in time intervals that include an extremely large number of periods. As is known, these equations cannot be solved efficiently using conventional methods. A further study of novel geometric integrators has become increasingly important in recent years. The objective of this monograph is to explore further geometric integrators for highly oscillatory problems that can be formulated as systems of ordinary and partial differential equations. Facing challenging scientific computational problems, this book presents some new perspectives of the subject matter based on theoretical derivations and mathematical analysis, and provides high-performance numerical simulations. In order to show the long-time numerical behaviour of the simulation, all the integrators presented in this monograph have been tested and verified on highly oscillatory systems from a wide range of applications in the field of science and engineering. They are more efficient than existing schemes in the literature for differential equations that have highly oscillatory solutions. This book is useful to researchers, teachers, students and engineers who are interested in Geometric Integrators and their long-time behaviour analysis for differential equations with highly oscillatory solutions.


Group Theory and Numerical Analysis

Group Theory and Numerical Analysis

Author: Pavel Winternitz

Publisher: American Mathematical Soc.

Published:

Total Pages: 316

ISBN-13: 9780821870341

DOWNLOAD EBOOK

The Workshop on Group Theory and Numerical Analysis brought together scientists working in several different but related areas. The unifying theme was the application of group theory and geometrical methods to the solution of differential and difference equations. The emphasis was on the combination of analytical and numerical methods and also the use of symbolic computation. This meeting was organized under the auspices of the Centre de Recherches Mathematiques, Universite de Montreal (Canada). This volume has the character of a monograph and should represent a useful reference book for scientists working in this highly topical field.


Volterra Integral Equations

Volterra Integral Equations

Author: Hermann Brunner

Publisher: Cambridge University Press

Published: 2017-01-20

Total Pages: 405

ISBN-13: 1316982653

DOWNLOAD EBOOK

This book offers a comprehensive introduction to the theory of linear and nonlinear Volterra integral equations (VIEs), ranging from Volterra's fundamental contributions and the resulting classical theory to more recent developments that include Volterra functional integral equations with various kinds of delays, VIEs with highly oscillatory kernels, and VIEs with non-compact operators. It will act as a 'stepping stone' to the literature on the advanced theory of VIEs, bringing the reader to the current state of the art in the theory. Each chapter contains a large number of exercises, extending from routine problems illustrating or complementing the theory to challenging open research problems. The increasingly important role of VIEs in the mathematical modelling of phenomena where memory effects play a key role is illustrated with some 30 concrete examples, and the notes at the end of each chapter feature complementary references as a guide to further reading.


New Initiatives On Lepton Flavor Violation And Neutrino Oscillation With High Intense Muon And Neutrino Sources

New Initiatives On Lepton Flavor Violation And Neutrino Oscillation With High Intense Muon And Neutrino Sources

Author: Yoshitaka Kuno

Publisher: World Scientific

Published: 2002-10-07

Total Pages: 262

ISBN-13: 981448802X

DOWNLOAD EBOOK

The area of physics involving muons and neutrinos has become exciting in particle physics. Using their high intensity sources, physicists undertake, in various ways, extensive searches for new physics beyond the Standard Model, such as tests of supersymmetric grand unification (SUSY-GUT) and precision measurements of the muon and neutrino properties, which will in future extend to ambitious studies such as determination of the three-generation neutrino mixing matrix elements and CP violation in the lepton sector. The physics of this field is advancing, with potential improvements of the sources. Many R&D projects, such as those concerning high intensity, low energy muon sources or a neutrino factory, are being carried out or planned at various places. Some of those topics are included in this book.


Highly Oscillatory Problems

Highly Oscillatory Problems

Author: Bjorn Engquist

Publisher: Cambridge University Press

Published: 2009-07-02

Total Pages: 254

ISBN-13: 0521134439

DOWNLOAD EBOOK

Review papers from experts in areas of active research into highly oscillatory problems, with an emphasis on computation.


Mathematical Analysis and its Applications

Mathematical Analysis and its Applications

Author: P. N. Agrawal

Publisher: Springer

Published: 2015-08-22

Total Pages: 752

ISBN-13: 813222485X

DOWNLOAD EBOOK

This book discusses recent developments in and the latest research on mathematics, statistics and their applications. All contributing authors are eminent academics, scientists, researchers and scholars in their respective fields, hailing from around the world. The book presents roughly 60 unpublished, high-quality and peer-reviewed research papers that cover a broad range of areas including approximation theory, harmonic analysis, operator theory, fixed-point theory, functional differential equations, dynamical and control systems, complex analysis, special functions, function spaces, summability theory, Fourier and wavelet analysis, and numerical analysis – all of which are topics of great interest to the research community – while further papers highlight important applications of mathematical analysis in science, engineering and related areas. This conference aims at bringing together experts and young researchers in mathematics from all over the world to discuss the latest advances in mathematical analysis and at promoting the exchange of ideas in various applications of mathematics in engineering, physics and biology. This conference encourages international collaboration and provides young researchers an opportunity to learn about the current state of the research in their respective fields.


Integral Transforms and Operational Calculus

Integral Transforms and Operational Calculus

Author: H. M. Srivastava

Publisher: MDPI

Published: 2019-11-20

Total Pages: 510

ISBN-13: 303921618X

DOWNLOAD EBOOK

Researches and investigations involving the theory and applications of integral transforms and operational calculus are remarkably wide-spread in many diverse areas of the mathematical, physical, chemical, engineering and statistical sciences. This Special Issue contains a total of 36 carefully-selected and peer-reviewed articles which are authored by established researchers from many countries. Included in this Special Issue are review, expository and original research articles dealing with the recent advances on the topics of integral transforms and operational calculus as well as their multidisciplinary applications


Numerical Analysis and Its Applications

Numerical Analysis and Its Applications

Author: Svetozar D. Margenov

Publisher: Springer

Published: 2009-02-07

Total Pages: 646

ISBN-13: 3642004644

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed post-conference proceedings of the 4th International Conference on Numerical Analysis and Its Applications, NAA 2008, held in Lozenetz, Bulgaria in June 2008. The 61 revised full papers presented together with 13 invited papers were carefully selected during two rounds of reviewing and improvement. The papers address all current aspects of numerical analysis and discuss a wide range of problems concerning recent achievements in physics, chemistry, engineering, and economics. A special focus is given to numerical approximation and computational geometry, numerical linear algebra and numerical solution of transcendental equations, numerical methods for differential equations, numerical modeling, and high performance scientific computing.