This work is a showcase for the integration of systems biology and bioinformatics tools, algorithms and models for deciphering biological phenomena. More specifically, it integrates (i) prediction algorithms for identifying and characterizing molecular interactions, (ii) structural modelling of molecule complexes, (iii) network analysis approaches, and (iv) mathematical modelling and simulation. Two comprehensive workflows are implemented for the analysis of collective target gene regulation by microRNAs and for the prediction of cooperating microRNA pairs and their mutual target genes. In two case studies mechanisms of fine-tuned target gene regulation are revealed for different cellular processes and the phenomenon of cooperative target regulation is identified as frequent mechanism of gene regulation in humans.
This detailed volume provides a collection of protocols for the study of miRNA functions in plants. Beginning with coverage of miRNA function, biogenesis, activity, and evolution in plants, the book continues by guiding readers through methods on the identification and detection of plant miRNAs, bioinformatic analyses, and strategies for functional analyses of miRNAs. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Plant MicroRNAs: Method and Protocols aims to ensure successful results in the further study of this vital area of plant science.
The enormous complexity of biological systems at the molecular level must be answered with powerful computational methods. Computational biology is a young field, but has seen rapid growth and advancement over the past few decades. Surveying the progress made in this multidisciplinary field, the Handbook of Computational Molecular Biology offers comprehensive, systematic coverage of the various techniques and methodologies currently available. Accomplished researcher Srinivas Aluru leads a team of experts from around the world to produce this groundbreaking, authoritative reference. With discussions ranging from fundamental concepts to practical applications, this book details the algorithms necessary to solve novel problems and manage the massive amounts of data housed in biological databases throughout the world. Divided into eight sections for convenient searching, the handbook covers methods and algorithms for sequence alignment, string data structures, sequence assembly and clustering, genome-scale computational methods in comparative genomics, evolutionary and phylogenetic trees, microarrays and gene expression analysis, computational methods in structural biology, and bioinformatics databases and data mining. The Handbook of Computational Molecular Biology is the first resource to integrate coverage of the broad spectrum of topics in computational biology and bioinformatics. It supplies a quick-reference guide for easy implementation and provides a strong foundation for future discoveries in the field.
This edited reflects the current state of knowledge about the role of microRNAs in the formation and progression of solid tumours. The main focus lies on computational methods and applications, together with cutting edge experimental techniques that are used to approach all aspects of microRNA regulation in cancer. We are sure that the emergence of high-throughput quantitative techniques will make this integrative approach absolutely necessary in the near future. This book will be a resource for researchers starting out with cancer microRNA research, but is also intended for the experienced researcher who wants to incorporate concepts and tools from systems biology and bioinformatics into his work. Bioinformaticians and modellers are provided with a general perspective on microRNA biology in cancer, and the state-of-the-art in computational microRNA biology.
RNAs form complexes with proteins and other RNAs. The RNA‐infrastructure represents the spatiotemporal interaction of these proteins and RNAs in a cell‐wide network. RNA Infrastructure and Networks brings together these ideas to illustrate the scope of RNA‐based biology, and how connecting RNA mechanisms is a powerful tool to investigate regulatory pathways. This book is but a taste of the wide range of RNA‐based mechanisms that connect in the RNA infrastructure.
The collection of chapters in this proceeding volume reflects the latest research presented at the Aegean meeting on Tumor Microenvironment and Cellular Stress held in Crete in Fall of 2012. The book provides critical insight to how the tumor microenvironment affects tumor metabolism, cell stemness, cell viability, genomic instability and more. Additional topics include identifying common pathways that are potential candidates for therapeutic intervention, which will stimulate collaboration between groups that are more focused on elucidation of biochemical aspects of stress biology and groups that study the pathophysiological aspects of stress pathways or engaged in drug discovery.
Introduces readers to the state of the art of omics platforms and all aspects of omics approaches for clinical applications This book presents different high throughput omics platforms used to analyze tissue, plasma, and urine. The reader is introduced to state of the art analytical approaches (sample preparation and instrumentation) related to proteomics, peptidomics, transcriptomics, and metabolomics. In addition, the book highlights innovative approaches using bioinformatics, urine miRNAs, and MALDI tissue imaging in the context of clinical applications. Particular emphasis is put on integration of data generated from these different platforms in order to uncover the molecular landscape of diseases. The relevance of each approach to the clinical setting is explained and future applications for patient monitoring or treatment are discussed. Integration of omics Approaches and Systems Biology for Clinical Applications presents an overview of state of the art omics techniques. These methods are employed in order to obtain the comprehensive molecular profile of biological specimens. In addition, computational tools are used for organizing and integrating these multi-source data towards developing molecular models that reflect the pathophysiology of diseases. Investigation of chronic kidney disease (CKD) and bladder cancer are used as test cases. These represent multi-factorial, highly heterogeneous diseases, and are among the most significant health issues in developed countries with a rapidly aging population. The book presents novel insights on CKD and bladder cancer obtained by omics data integration as an example of the application of systems biology in the clinical setting. Describes a range of state of the art omics analytical platforms Covers all aspects of the systems biology approach—from sample preparation to data integration and bioinformatics analysis Contains specific examples of omics methods applied in the investigation of human diseases (Chronic Kidney Disease, Bladder Cancer) Integration of omics Approaches and Systems Biology for Clinical Applications will appeal to a wide spectrum of scientists including biologists, biotechnologists, biochemists, biophysicists, and bioinformaticians working on the different molecular platforms. It is also an excellent text for students interested in these fields.
In Clinical Bioinformatics, Second Edition, leading experts in the field provide a series of articles focusing on software applications used to translate information into outcomes of clinical relevance. Recent developments in omics, such as increasingly sophisticated analytic platforms allowing changes in diagnostic strategies from the traditional focus on single or small number of analytes to what might be possible when large numbers or all analytes are measured, are now impacting patient care. Covering such topics as gene discovery, gene function (microarrays), DNA sequencing, online approaches and resources, and informatics in clinical practice, this volume concisely yet thoroughly explores this cutting-edge subject. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Clinical Bioinformatics, Second Edition serves as an ideal guide for scientists and health professionals working in genetics and genomics.
This book includes updated information about microRNA regulation, for example, in the fields of circular RNAs, multiomics analysis, biomarkers and oncogenes. The variety of topics included in this book reaffirms the extent to which microRNA regulation affects biological processes. Although microRNAs are not translated to proteins, their importance for biological processes is not less than proteins. An understanding of their roles in various biological processes is critical to understanding gene function in these biological processes. Although non-coding RNAs other than microRNAs have recently come under investigation, microRNA still remains the front runner as the subject of genetic and biological studies. In reading the collection of papers, readers can grasp the most updated information regarding microRNA regulation, which will continue to be an important topic in genetics and biology.