Oscillations and Waves

Oscillations and Waves

Author: Richard Fitzpatrick

Publisher: CRC Press

Published: 2018-07-17

Total Pages: 425

ISBN-13: 1351063081

DOWNLOAD EBOOK

Emphasizing physics over mathematics, this popular, classroom-tested text helps advanced undergraduates acquire a sound physical understanding of wave phenomena. This second edition of Oscillations and Waves: An Introduction contains new widgets, animations in Python, and exercises, as well as updated chapter content throughout; continuing to ease the difficult transition for students between lower-division courses that mostly encompass algebraic equations and upper-division courses that rely on differential equations. Assuming familiarity with the laws of physics and college-level mathematics, the author covers aspects of optics that crucially depend on the wave-like nature of light, such as wave optics. Examples explore discrete mechanical, optical, and quantum mechanical systems; continuous gases, fluids, and elastic solids; electronic circuits; and electromagnetic waves. The text also introduces the conventional complex representation of oscillations and waves during the discussion of quantum mechanical waves. Features: Fully updated throughout and featuring new widgets, animations, and end of chapter exercises to enhance understanding Offers complete coverage of advanced topics in waves, such as electromagnetic wave propagation through the ionosphere Includes examples from mechanical systems, elastic solids, electronic circuits, optical systems, and other areas


Theory of Oscillators

Theory of Oscillators

Author: A. A. Andronov

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 848

ISBN-13: 1483194728

DOWNLOAD EBOOK

Theory of Oscillators presents the applications and exposition of the qualitative theory of differential equations. This book discusses the idea of a discontinuous transition in a dynamic process. Organized into 11 chapters, this book begins with an overview of the simplest type of oscillatory system in which the motion is described by a linear differential equation. This text then examines the character of the motion of the representative point along the hyperbola. Other chapters consider examples of two basic types of non-linear non-conservative systems, namely, dissipative systems and self-oscillating systems. This book discusses as well the discontinuous self-oscillations of a symmetrical multi-vibrator neglecting anode reaction. The final chapter deals with the immense practical importance of the stability of physical systems containing energy sources particularly control systems. This book is a valuable resource for electrical engineers, scientists, physicists, and mathematicians.


Introduction to Nonlinear Oscillations

Introduction to Nonlinear Oscillations

Author: Vladimir I. Nekorkin

Publisher: John Wiley & Sons

Published: 2015-04-01

Total Pages: 264

ISBN-13: 3527685421

DOWNLOAD EBOOK

A systematic outline of the basic theory of oscillations, combining several tools in a single textbook. The author explains fundamental ideas and methods, while equally aiming to teach students the techniques of solving specific (practical) or more complex problems. Following an introduction to fundamental notions and concepts of modern nonlinear dynamics, the text goes on to set out the basics of stability theory, as well as bifurcation theory in one and two-dimensional cases. Foundations of asymptotic methods and the theory of relaxation oscillations are presented, with much attention paid to a method of mappings and its applications. With each chapter including exercises and solutions, including computer problems, this book can be used in courses on oscillation theory for physics and engineering students. It also serves as a good reference for students and scientists in computational neuroscience.


Frequency Methods in Oscillation Theory

Frequency Methods in Oscillation Theory

Author: G.A. Leonov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 415

ISBN-13: 9400901933

DOWNLOAD EBOOK

This book is devoted to nonlocal theory of nonlinear oscillations. The frequency methods of investigating problems of cycle existence in multidimensional analogues of Van der Pol equation, in dynamical systems with cylindrical phase space and dynamical systems satisfying Routh-Hurwitz generalized conditions are systematically presented here for the first time. To solve these problems methods of Poincaré map construction, frequency methods, synthesis of Lyapunov direct methods and bifurcation theory elements are applied. V.M. Popov's method is employed for obtaining frequency criteria, which estimate period of oscillations. Also, an approach to investigate the stability of cycles based on the ideas of Zhukovsky, Borg, Hartmann, and Olech is presented, and the effects appearing when bounded trajectories are unstable are discussed. For chaotic oscillations theorems on localizations of attractors are given. The upper estimates of Hausdorff measure and dimension of attractors generalizing Doudy-Oesterle and Smith theorems are obtained, illustrated by the example of a Lorenz system and its different generalizations. The analytical apparatus developed in the book is applied to the analysis of oscillation of various control systems, pendulum-like systems and those of synchronization. Audience: This volume will be of interest to those whose work involves Fourier analysis, global analysis, and analysis on manifolds, as well as mathematics of physics and mechanics in general. A background in linear algebra and differential equations is assumed.


Oscillations in Nonlinear Systems

Oscillations in Nonlinear Systems

Author: Jack K. Hale

Publisher: Courier Dover Publications

Published: 2015-03-24

Total Pages: 193

ISBN-13: 0486803260

DOWNLOAD EBOOK

By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction provides a unified approach for obtaining periodic solutions to nonautonomous and autonomous differential equations. 1963 edition.


Damped Oscillations of Linear Systems

Damped Oscillations of Linear Systems

Author: Krešimir Veselić

Publisher: Springer Science & Business Media

Published: 2011-07-09

Total Pages: 215

ISBN-13: 3642213340

DOWNLOAD EBOOK

The theory of linear damped oscillations was originally developed more than hundred years ago and is still of vital research interest to engineers, mathematicians and physicists alike. This theory plays a central role in explaining the stability of mechanical structures in civil engineering, but it also has applications in other fields such as electrical network systems and quantum mechanics. This volume gives an introduction to linear finite dimensional damped systems as they are viewed by an applied mathematician. After a short overview of the physical principles leading to the linear system model, a largely self-contained mathematical theory for this model is presented. This includes the geometry of the underlying indefinite metric space, spectral theory of J-symmetric matrices and the associated quadratic eigenvalue problem. Particular attention is paid to the sensitivity issues which influence numerical computations. Finally, several recent research developments are included, e.g. Lyapunov stability and the perturbation of the time evolution.


Oscillations of Literary Theory

Oscillations of Literary Theory

Author: A. C. Facundo

Publisher: State University of New York Press

Published: 2016-09-30

Total Pages: 244

ISBN-13: 1438463103

DOWNLOAD EBOOK

Oscillations of Literary Theory offers a new psychoanalytic approach to reading literature queerly, one that implicates queer theory without depending on explicit representations of sex or queer identities. By focusing on desire and identifications, A. C. Facundo argues that readers can enjoy the text through a variety of rhythms between two (eroticized) positions: the paranoid imperative and queer reparative. Facundo examines the metaphor of rupture as central to the logic of critique, particularly the project to undo conventional formations of identity and power. To show how readers can rebuild their relational worlds after the rupture, Facundo looks to the themes of the desire for omniscience, the queer pleasure of the text, loss and letting go, and the vanishing points that structure thinking. Analyses of Nabokov's Lolita, Danielewski's House of Leaves, Findley's The Wars, and Ishiguro's Never Let Me Go are included, which model this new approach to reading.


Oscillation Theory for Functional Differential Equations

Oscillation Theory for Functional Differential Equations

Author: Lynn Erbe

Publisher: Routledge

Published: 2017-10-02

Total Pages: 504

ISBN-13: 135142632X

DOWNLOAD EBOOK

Examines developments in the oscillatory and nonoscillatory properties of solutions for functional differential equations, presenting basic oscillation theory as well as recent results. The book shows how to extend the techniques for boundary value problems of ordinary differential equations to those of functional differential equations.


Fundamentals of Waves and Oscillations

Fundamentals of Waves and Oscillations

Author: K. U. Ingard

Publisher: Cambridge University Press

Published: 1988-07-28

Total Pages: 570

ISBN-13: 9780521327343

DOWNLOAD EBOOK

This is a complete introduction to the theory of waves and oscillations as encountered by physics and engineering students. It discusses both the mathematical theory and the physics of phenomena such as waves in fluids, electromagnetic waves, and discrete coupled oscillators in mechanics and electronics. The author gives a description of the mathematics of complex amplitudes and introduces forced and free oscillations and normal modes of resonance. Chapters cover wave guides, barrier penetration, and electromagnetic transmission. One section, devoted solely to surface waves, includes a discussion on light scattering and the determination of surface tension and viscosity, plasma oscillations, and feedback oscillations. Ideas and equations are displayed for easy reference, and sets of exercises follow each chapter.


Biological Clocks, Rhythms, and Oscillations

Biological Clocks, Rhythms, and Oscillations

Author: Daniel B. Forger

Publisher: MIT Press

Published: 2024-08-06

Total Pages: 369

ISBN-13: 0262552817

DOWNLOAD EBOOK

An introduction to the mathematical, computational, and analytical techniques used for modeling biological rhythms, presenting tools from many disciplines and example applications. All areas of biology and medicine contain rhythms, and these behaviors are best understood through mathematical tools and techniques. This book offers a survey of mathematical, computational, and analytical techniques used for modeling biological rhythms, gathering these methods for the first time in one volume. Drawing on material from such disciplines as mathematical biology, nonlinear dynamics, physics, statistics, and engineering, it presents practical advice and techniques for studying biological rhythms, with a common language. The chapters proceed with increasing mathematical abstraction. Part I, on models, highlights the implicit assumptions and common pitfalls of modeling, and is accessible to readers with basic knowledge of differential equations and linear algebra. Part II, on behaviors, focuses on simpler models, describing common properties of biological rhythms that range from the firing properties of squid giant axon to human circadian rhythms. Part III, on mathematical techniques, guides readers who have specific models or goals in mind. Sections on “frontiers” present the latest research; “theory” sections present interesting mathematical results using more accessible approaches than can be found elsewhere. Each chapter offers exercises. Commented MATLAB code is provided to help readers get practical experience. The book, by an expert in the field, can be used as a textbook for undergraduate courses in mathematical biology or graduate courses in modeling biological rhythms and as a reference for researchers.