An Introduction to the Planning Domain Definition Language

An Introduction to the Planning Domain Definition Language

Author: Patrik Kulkarni

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 169

ISBN-13: 3031015843

DOWNLOAD EBOOK

Planning is the branch of Artificial Intelligence (AI) that seeks to automate reasoning about plans, most importantly the reasoning that goes into formulating a plan to achieve a given goal in a given situation. AI planning is model-based: a planning system takes as input a description (or model) of the initial situation, the actions available to change it, and the goal condition to output a plan composed of those actions that will accomplish the goal when executed from the initial situation. The Planning Domain Definition Language (PDDL) is a formal knowledge representation language designed to express planning models. Developed by the planning research community as a means of facilitating systems comparison, it has become a de-facto standard input language of many planning systems, although it is not the only modelling language for planning. Several variants of PDDL have emerged that capture planning problems of different natures and complexities, with a focus on deterministic problems. The purpose of this book is two-fold. First, we present a unified and current account of PDDL, covering the subsets of PDDL that express discrete, numeric, temporal, and hybrid planning. Second, we want to introduce readers to the art of modelling planning problems in this language, through educational examples that demonstrate how PDDL is used to model realistic planning problems. The book is intended for advanced students and researchers in AI who want to dive into the mechanics of AI planning, as well as those who want to be able to use AI planning systems without an in-depth explanation of the algorithms and implementation techniques they use.


An Introduction to the Planning Domain Definition Language

An Introduction to the Planning Domain Definition Language

Author: Patrik Haslum

Publisher: Morgan & Claypool Publishers

Published: 2019-04-02

Total Pages: 189

ISBN-13: 1627057374

DOWNLOAD EBOOK

Planning is the branch of Artificial Intelligence (AI) that seeks to automate reasoning about plans, most importantly the reasoning that goes into formulating a plan to achieve a given goal in a given situation. AI planning is model-based: a planning system takes as input a description (or model) of the initial situation, the actions available to change it, and the goal condition to output a plan composed of those actions that will accomplish the goal when executed from the initial situation. The Planning Domain Definition Language (PDDL) is a formal knowledge representation language designed to express planning models. Developed by the planning research community as a means of facilitating systems comparison, it has become a de-facto standard input language of many planning systems, although it is not the only modelling language for planning. Several variants of PDDL have emerged that capture planning problems of different natures and complexities, with a focus on deterministic problems. The purpose of this book is two-fold. First, we present a unified and current account of PDDL, covering the subsets of PDDL that express discrete, numeric, temporal, and hybrid planning. Second, we want to introduce readers to the art of modelling planning problems in this language, through educational examples that demonstrate how PDDL is used to model realistic planning problems. The book is intended for advanced students and researchers in AI who want to dive into the mechanics of AI planning, as well as those who want to be able to use AI planning systems without an in-depth explanation of the algorithms and implementation techniques they use.


Artificial Intelligence Research and Development

Artificial Intelligence Research and Development

Author: M. Villaret

Publisher: IOS Press

Published: 2021-10-14

Total Pages: 486

ISBN-13: 1643682113

DOWNLOAD EBOOK

Artificial intelligence has become an indispensible part of our lives in recent years, affecting all aspects from business and leisure to transport and health care. This book presents the proceedings of the 23rd edition of the International Conference of the Catalan Association for Artificial Intelligence (CCIA), an annual event that serves as a meeting point for researchers in Artificial Intelligence in the area of the Catalan speaking territories and from around the world. The 2021 edition was held online as a virtual conference from 20 - 22 October 2021 due to the COVID-19 pandemic. The book contains 42 long papers and 9 short papers, carefully reviewed and selected. The papers cover all aspects of artificial intelligence and are divided under six section headings: combinatorial problem solving and logics for artificial intelligence; sentiment analysis and tekst analysis; data science and decision support systems; machine learning; computer vision; and explainability and argumentation. Abstracts of the 2 invited talks delivered at the conference by Prof. Patty Kostkova and Prof. João Marques-Silva are also included. Offering a state of the art overview of the subject from a regional perspective, the book will be of interest to all those working in the field of artificial intelligence.


Knowledge Engineering Tools and Techniques for AI Planning

Knowledge Engineering Tools and Techniques for AI Planning

Author: Mauro Vallati

Publisher: Springer Nature

Published: 2020-03-25

Total Pages: 275

ISBN-13: 3030385612

DOWNLOAD EBOOK

This book presents a comprehensive review for Knowledge Engineering tools and techniques that can be used in Artificial Intelligence Planning and Scheduling. KE tools can be used to aid in the acquisition of knowledge and in the construction of domain models, which this book will illustrate. AI planning engines require a domain model which captures knowledge about how a particular domain works - e.g. the objects it contains and the available actions that can be used. However, encoding a planning domain model is not a straightforward task - a domain expert may be needed for their insight into the domain but this information must then be encoded in a suitable representation language. The development of such domain models is both time-consuming and error-prone. Due to these challenges, researchers have developed a number of automated tools and techniques to aid in the capture and representation of knowledge. This book targets researchers and professionals working in knowledge engineering, artificial intelligence and software engineering. Advanced-level students studying AI will also be interested in this book.


PRIMA 2022: Principles and Practice of Multi-Agent Systems

PRIMA 2022: Principles and Practice of Multi-Agent Systems

Author: Reyhan Aydoğan

Publisher: Springer Nature

Published: 2022-11-11

Total Pages: 714

ISBN-13: 3031212037

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 23rd International Conference on Principles and Practice of Multi-Agent Systems, PRIMA 2020, held in hybrid mode in Valencia, Spain, in November 2022. The 31 full papers presented together with 15 short papers and 1 demo paper were carefully reviewed and selected from 100 submissions. The conference covers a wide range of ranging from foundations of agent theory and engineering aspects of agent systems, to emerging interdisciplinary areas of agent-based research.


Advances in Computational Collective Intelligence

Advances in Computational Collective Intelligence

Author: Costin Bădică

Publisher: Springer Nature

Published: 2022-09-21

Total Pages: 742

ISBN-13: 3031162102

DOWNLOAD EBOOK

This book constitutes refereed proceedings of the 14th International Conference on International Conference on Computational Collective Intelligence, ICCCI 2022, held in Hammamet, Tunisia, in September 2022. The 43 full papers and 15 short papers were thoroughly reviewed and selected from 421 submissions. The papers are grouped in topical ​sections on ​collective intelligence and collective decision-making; natural language processing; deep learning; computational intelligence for multimedia understanding; computational intelligence in medical applications; applications for industry 4.0; experience enhanced intelligence to IoT and sensors; cooperative strategies for decision making and optimization; machine learning methods.


ECAI 2020

ECAI 2020

Author: G. De Giacomo

Publisher: IOS Press

Published: 2020-09-11

Total Pages: 3122

ISBN-13: 164368101X

DOWNLOAD EBOOK

This book presents the proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), held in Santiago de Compostela, Spain, from 29 August to 8 September 2020. The conference was postponed from June, and much of it conducted online due to the COVID-19 restrictions. The conference is one of the principal occasions for researchers and practitioners of AI to meet and discuss the latest trends and challenges in all fields of AI and to demonstrate innovative applications and uses of advanced AI technology. The book also includes the proceedings of the 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020) held at the same time. A record number of more than 1,700 submissions was received for ECAI 2020, of which 1,443 were reviewed. Of these, 361 full-papers and 36 highlight papers were accepted (an acceptance rate of 25% for full-papers and 45% for highlight papers). The book is divided into three sections: ECAI full papers; ECAI highlight papers; and PAIS papers. The topics of these papers cover all aspects of AI, including Agent-based and Multi-agent Systems; Computational Intelligence; Constraints and Satisfiability; Games and Virtual Environments; Heuristic Search; Human Aspects in AI; Information Retrieval and Filtering; Knowledge Representation and Reasoning; Machine Learning; Multidisciplinary Topics and Applications; Natural Language Processing; Planning and Scheduling; Robotics; Safe, Explainable, and Trustworthy AI; Semantic Technologies; Uncertainty in AI; and Vision. The book will be of interest to all those whose work involves the use of AI technology.


A Concise Introduction to Models and Methods for Automated Planning

A Concise Introduction to Models and Methods for Automated Planning

Author: Hector Radanovic

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 132

ISBN-13: 3031015649

DOWNLOAD EBOOK

Planning is the model-based approach to autonomous behavior where the agent behavior is derived automatically from a model of the actions, sensors, and goals. The main challenges in planning are computational as all models, whether featuring uncertainty and feedback or not, are intractable in the worst case when represented in compact form. In this book, we look at a variety of models used in AI planning, and at the methods that have been developed for solving them. The goal is to provide a modern and coherent view of planning that is precise, concise, and mostly self-contained, without being shallow. For this, we make no attempt at covering the whole variety of planning approaches, ideas, and applications, and focus on the essentials. The target audience of the book are students and researchers interested in autonomous behavior and planning from an AI, engineering, or cognitive science perspective. Table of Contents: Preface / Planning and Autonomous Behavior / Classical Planning: Full Information and Deterministic Actions / Classical Planning: Variations and Extensions / Beyond Classical Planning: Transformations / Planning with Sensing: Logical Models / MDP Planning: Stochastic Actions and Full Feedback / POMDP Planning: Stochastic Actions and Partial Feedback / Discussion / Bibliography / Author's Biography


Inductive Synthesis of Functional Programs

Inductive Synthesis of Functional Programs

Author: Ute Schmid

Publisher: Springer

Published: 2003-09-09

Total Pages: 408

ISBN-13: 3540448462

DOWNLOAD EBOOK

Because of its promise to support human programmers in developing correct and efficient program code and in reasoning about programs, automatic program synthesis has attracted the attention of researchers and professionals since the 1970s. This book focusses on inductive program synthesis, and especially on the induction of recursive functions; it is organized into three parts on planning, inductive program synthesis, and analogical problem solving and learning. Besides methodological issues in inductive program synthesis, emphasis is placed on its applications to control rule learning for planning. Furthermore, relations to problem solving and learning in cognitive psychology are discussed.


Planning Algorithms

Planning Algorithms

Author: Steven M. LaValle

Publisher: Cambridge University Press

Published: 2006-05-29

Total Pages: 844

ISBN-13: 9780521862059

DOWNLOAD EBOOK

Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. Written for computer scientists and engineers with interests in artificial intelligence, robotics, or control theory, this is the only book on this topic that tightly integrates a vast body of literature from several fields into a coherent source for teaching and reference in a wide variety of applications. Difficult mathematical material is explained through hundreds of examples and illustrations.