An Introduction to the Mathematics of Money

An Introduction to the Mathematics of Money

Author: David Lovelock

Publisher: Springer Science & Business Media

Published: 2007-04-05

Total Pages: 297

ISBN-13: 0387681116

DOWNLOAD EBOOK

This is an undergraduate textbook on the basic aspects of personal savings and investing with a balanced mix of mathematical rigor and economic intuition. It uses routine financial calculations as the motivation and basis for tools of elementary real analysis rather than taking the latter as given. Proofs using induction, recurrence relations and proofs by contradiction are covered. Inequalities such as the Arithmetic-Geometric Mean Inequality and the Cauchy-Schwarz Inequality are used. Basic topics in probability and statistics are presented. The student is introduced to elements of saving and investing that are of life-long practical use. These include savings and checking accounts, certificates of deposit, student loans, credit cards, mortgages, buying and selling bonds, and buying and selling stocks. The book is self contained and accessible. The authors follow a systematic pattern for each chapter including a variety of examples and exercises ensuring that the student deals with realities, rather than theoretical idealizations. It is suitable for courses in mathematics, investing, banking, financial engineering, and related topics.


Mathematics for Finance

Mathematics for Finance

Author: Marek Capinski

Publisher: Springer

Published: 2006-04-18

Total Pages: 317

ISBN-13: 1852338466

DOWNLOAD EBOOK

This textbook contains the fundamentals for an undergraduate course in mathematical finance aimed primarily at students of mathematics. Assuming only a basic knowledge of probability and calculus, the material is presented in a mathematically rigorous and complete way. The book covers the time value of money, including the time structure of interest rates, bonds and stock valuation; derivative securities (futures, options), modelling in discrete time, pricing and hedging, and many other core topics. With numerous examples, problems and exercises, this book is ideally suited for independent study.


Understanding the Mathematics of Personal Finance

Understanding the Mathematics of Personal Finance

Author: Lawrence N. Dworsky

Publisher: John Wiley & Sons

Published: 2009-09-22

Total Pages: 262

ISBN-13: 0470538384

DOWNLOAD EBOOK

A user-friendly presentation of the essential concepts and tools for calculating real costs and profits in personal finance Understanding the Mathematics of Personal Finance explains how mathematics, a simple calculator, and basic computer spreadsheets can be used to break down and understand even the most complex loan structures. In an easy-to-follow style, the book clearly explains the workings of basic financial calculations, captures the concepts behind loans and interest in a step-by-step manner, and details how these steps can be implemented for practical purposes. Rather than simply providing investment and borrowing strategies, the author successfully equips readers with the skills needed to make accurate and effective decisions in all aspects of personal finance ventures, including mortgages, annuities, life insurance, and credit card debt. The book begins with a primer on mathematics, covering the basics of arithmetic operations and notations, and proceeds to explore the concepts of interest, simple interest, and compound interest. Subsequent chapters illustrate the application of these concepts to common types of personal finance exchanges, including: Loan amortization and savings Mortgages, reverse mortgages, and viatical settlements Prepayment penalties Credit cards The book provides readers with the tools needed to calculate real costs and profits using various financial instruments. Mathematically inclined readers will enjoy the inclusion of mathematical derivations, but these sections are visually distinct from the text and can be skipped without the loss of content or complete understanding of the material. In addition, references to online calculators and instructions for building the calculations involved in a spreadsheet are provided. Furthermore, a related Web site features additional problem sets, the spreadsheet calculators that are referenced and used throughout the book, and links to various other financial calculators. Understanding the Mathematics of Personal Finance is an excellent book for finance courses at the undergraduate level. It is also an essential reference for individuals who are interested in learning how to make effective financial decisions in their everyday lives.


An Introduction to the Mathematics of Finance

An Introduction to the Mathematics of Finance

Author: Stephen Garrett

Publisher: Butterworth-Heinemann

Published: 2013-05-28

Total Pages: 465

ISBN-13: 0080982751

DOWNLOAD EBOOK

An Introduction to the Mathematics of Finance: A Deterministic Approach, Second edition, offers a highly illustrated introduction to mathematical finance, with a special emphasis on interest rates. This revision of the McCutcheon-Scott classic follows the core subjects covered by the first professional exam required of UK actuaries, the CT1 exam. It realigns the table of contents with the CT1 exam and includes sample questions from past exams of both The Actuarial Profession and the CFA Institute. With a wealth of solved problems and interesting applications, An Introduction to the Mathematics of Finance stands alone in its ability to address the needs of its primary target audience, the actuarial student. - Closely follows the syllabus for the CT1 exam of The Institute and Faculty of Actuaries - Features new content and more examples - Online supplements available: http://booksite.elsevier.com/9780080982403/ - Includes past exam questions from The Institute and Faculty of Actuaries and the CFA Institute


Mathematical Techniques in Finance

Mathematical Techniques in Finance

Author: Amir Sadr

Publisher: John Wiley & Sons

Published: 2022-04-21

Total Pages: 278

ISBN-13: 111983841X

DOWNLOAD EBOOK

Explore the foundations of modern finance with this intuitive mathematical guide In Mathematical Techniques in Finance: An Introduction, distinguished finance professional Amir Sadr delivers an essential and practical guide to the mathematical foundations of various areas of finance, including corporate finance, investments, risk management, and more. Readers will discover a wealth of accessible information that reveals the underpinnings of business and finance. You’ll learn about: Investment theory, including utility theory, mean-variance theory and asset allocation, and the Capital Asset Pricing Model Derivatives, including forwards, options, the random walk, and Brownian Motion Interest rate curves, including yield curves, interest rate swap curves, and interest rate derivatives Complete with math reviews, useful Excel functions, and a glossary of financial terms, Mathematical Techniques in Finance: An Introduction is required reading for students and professionals in finance.


Introduction to Quantitative Finance

Introduction to Quantitative Finance

Author: Robert R. Reitano

Publisher: MIT Press

Published: 2010-01-29

Total Pages: 747

ISBN-13: 026201369X

DOWNLOAD EBOOK

An introduction to many mathematical topics applicable to quantitative finance that teaches how to “think in mathematics” rather than simply do mathematics by rote. This text offers an accessible yet rigorous development of many of the fields of mathematics necessary for success in investment and quantitative finance, covering topics applicable to portfolio theory, investment banking, option pricing, investment, and insurance risk management. The approach emphasizes the mathematical framework provided by each mathematical discipline, and the application of each framework to the solution of finance problems. It emphasizes the thought process and mathematical approach taken to develop each result instead of the memorization of formulas to be applied (or misapplied) automatically. The objective is to provide a deep level of understanding of the relevant mathematical theory and tools that can then be effectively used in practice, to teach students how to “think in mathematics” rather than simply to do mathematics by rote. Each chapter covers an area of mathematics such as mathematical logic, Euclidean and other spaces, set theory and topology, sequences and series, probability theory, and calculus, in each case presenting only material that is most important and relevant for quantitative finance. Each chapter includes finance applications that demonstrate the relevance of the material presented. Problem sets are offered on both the mathematical theory and the finance applications sections of each chapter. The logical organization of the book and the judicious selection of topics make the text customizable for a number of courses. The development is self-contained and carefully explained to support disciplined independent study as well. A solutions manual for students provides solutions to the book's Practice Exercises; an instructor's manual offers solutions to the Assignment Exercises as well as other materials.


An Introduction to Mathematical Finance with Applications

An Introduction to Mathematical Finance with Applications

Author: Arlie O. Petters

Publisher: Springer

Published: 2016-06-17

Total Pages: 499

ISBN-13: 1493937839

DOWNLOAD EBOOK

This textbook aims to fill the gap between those that offer a theoretical treatment without many applications and those that present and apply formulas without appropriately deriving them. The balance achieved will give readers a fundamental understanding of key financial ideas and tools that form the basis for building realistic models, including those that may become proprietary. Numerous carefully chosen examples and exercises reinforce the student’s conceptual understanding and facility with applications. The exercises are divided into conceptual, application-based, and theoretical problems, which probe the material deeper. The book is aimed toward advanced undergraduates and first-year graduate students who are new to finance or want a more rigorous treatment of the mathematical models used within. While no background in finance is assumed, prerequisite math courses include multivariable calculus, probability, and linear algebra. The authors introduce additional mathematical tools as needed. The entire textbook is appropriate for a single year-long course on introductory mathematical finance. The self-contained design of the text allows for instructor flexibility in topics courses and those focusing on financial derivatives. Moreover, the text is useful for mathematicians, physicists, and engineers who want to learn finance via an approach that builds their financial intuition and is explicit about model building, as well as business school students who want a treatment of finance that is deeper but not overly theoretical.


Mathematical Finance

Mathematical Finance

Author: M. H. A. Davis

Publisher:

Published: 2019

Total Pages: 161

ISBN-13: 0198787944

DOWNLOAD EBOOK

Now a vital part of modern economies, the rapid growth of the finance industry in recent decades is largely due to the development of mathematical methods such as the theory of arbitrage. Asset valuation, credit trading, and fund management, now depend on these mathematical tools. Mark Davis explains the theories and their applications.


An Introduction to Financial Option Valuation

An Introduction to Financial Option Valuation

Author: Desmond J. Higham

Publisher: Cambridge University Press

Published: 2004-04-15

Total Pages: 300

ISBN-13: 1139457896

DOWNLOAD EBOOK

This is a lively textbook providing a solid introduction to financial option valuation for undergraduate students armed with a working knowledge of a first year calculus. Written in a series of short chapters, its self-contained treatment gives equal weight to applied mathematics, stochastics and computational algorithms. No prior background in probability, statistics or numerical analysis is required. Detailed derivations of both the basic asset price model and the Black–Scholes equation are provided along with a presentation of appropriate computational techniques including binomial, finite differences and in particular, variance reduction techniques for the Monte Carlo method. Each chapter comes complete with accompanying stand-alone MATLAB code listing to illustrate a key idea. Furthermore, the author has made heavy use of figures and examples, and has included computations based on real stock market data.