An accessible introduction for applied mathematicians to concepts and techniques for describing, quantifying, and understanding dynamics under uncertainty.
Focusing on the mathematical description of stochastic dynamics in discrete as well as in continuous time, this book investigates such dynamical phenomena as perturbations, bifurcations and chaos. It also introduces new ideas for the exploration of infinite dimensional systems, in particular stochastic partial differential equations. Example applications are presented from biology, chemistry and engineering, while describing numerical treatments of stochastic systems.
The aim of this book is to provide a well-structured and coherent overview of existing mathematical modeling approaches for biochemical reaction systems, investigating relations between both the conventional models and several types of deterministic-stochastic hybrid model recombinations. Another main objective is to illustrate and compare diverse numerical simulation schemes and their computational effort. Unlike related works, this book presents a broad scope in its applications, from offering a detailed introduction to hybrid approaches for the case of multiple population scales to discussing the setting of time-scale separation resulting from widely varying firing rates of reaction channels. Additionally, it also addresses modeling approaches for non well-mixed reaction-diffusion dynamics, including deterministic and stochastic PDEs and spatiotemporal master equations. Finally, by translating and incorporating complex theory to a level accessible to non-mathematicians, this book effectively bridges the gap between mathematical research in computational biology and its practical use in biological, biochemical, and biomedical systems.
In Stochastic Dynamics of Structures, Li and Chen present a unified view of the theory and techniques for stochastic dynamics analysis, prediction of reliability, and system control of structures within the innovative theoretical framework of physical stochastic systems. The authors outline the fundamental concepts of random variables, stochastic process and random field, and orthogonal expansion of random functions. Readers will gain insight into core concepts such as stochastic process models for typical dynamic excitations of structures, stochastic finite element, and random vibration analysis. Li and Chen also cover advanced topics, including the theory of and elaborate numerical methods for probability density evolution analysis of stochastic dynamical systems, reliability-based design, and performance control of structures. Stochastic Dynamics of Structures presents techniques for researchers and graduate students in a wide variety of engineering fields: civil engineering, mechanical engineering, aerospace and aeronautics, marine and offshore engineering, ship engineering, and applied mechanics. Practicing engineers will benefit from the concise review of random vibration theory and the new methods introduced in the later chapters. "The book is a valuable contribution to the continuing development of the field of stochastic structural dynamics, including the recent discoveries and developments by the authors of the probability density evolution method (PDEM) and its applications to the assessment of the dynamic reliability and control of complex structures through the equivalent extreme-value distribution." —A. H-S. Ang, NAE, Hon. Mem. ASCE, Research Professor, University of California, Irvine, USA "The authors have made a concerted effort to present a responsible and even holistic account of modern stochastic dynamics. Beyond the traditional concepts, they also discuss theoretical tools of recent currency such as the Karhunen-Loeve expansion, evolutionary power spectra, etc. The theoretical developments are properly supplemented by examples from earthquake, wind, and ocean engineering. The book is integrated by also comprising several useful appendices, and an exhaustive list of references; it will be an indispensable tool for students, researchers, and practitioners endeavoring in its thematic field." —Pol Spanos, NAE, Ryon Chair in Engineering, Rice University, Houston, USA
Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in fluid and subjected to random molecular bombardment laid the foundation for modern stochastic calculus and statistical physics. Other important examples include turbulent transport and diffusion of particle-tracers (pollutants), or continuous densities (''oil slicks''), wave propagation and scattering in randomly inhomogeneous media, for instance light or sound propagating in the turbulent atmosphere.Such models naturally render to statistical description, where the input parameters and solutions are expressed by random processes and fields.The fundamental problem of stochastic dynamics is to identify the essential characteristics of system (its state and evolution), and relate those to the input parameters of the system and initial data.This raises a host of challenging mathematical issues. One could rarely solve such systems exactly (or approximately) in a closed analytic form, and their solutions depend in a complicated implicit manner on the initial-boundary data, forcing and system's (media) parameters . In mathematical terms such solution becomes a complicated "nonlinear functional" of random fields and processes.Part I gives mathematical formulation for the basic physical models of transport, diffusion, propagation and develops some analytic tools.Part II sets up and applies the techniques of variational calculus and stochastic analysis, like Fokker-Plank equation to those models, to produce exact or approximate solutions, or in worst case numeric procedures. The exposition is motivated and demonstrated with numerous examples.Part III takes up issues for the coherent phenomena in stochastic dynamical systems, described by ordinary and partial differential equations, like wave propagation in randomly layered media (localization), turbulent advection of passive tracers (clustering).Each chapter is appended with problems the reader to solve by himself (herself), which will be a good training for independent investigations.·This book is translation from Russian and is completed with new principal results of recent research.·The book develops mathematical tools of stochastic analysis, and applies them to a wide range of physical models of particles, fluids, and waves.·Accessible to a broad audience with general background in mathematical physics, but no special expertise in stochastic analysis, wave propagation or turbulence
Stemming from the IHP trimester "Stochastic Dynamics Out of Equilibrium", this collection of contributions focuses on aspects of nonequilibrium dynamics and its ongoing developments. It is common practice in statistical mechanics to use models of large interacting assemblies governed by stochastic dynamics. In this context "equilibrium" is understood as stochastically (time) reversible dynamics with respect to a prescribed Gibbs measure. Nonequilibrium dynamics correspond on the other hand to irreversible evolutions, where fluxes appear in physical systems, and steady-state measures are unknown. The trimester, held at the Institut Henri Poincaré (IHP) in Paris from April to July 2017, comprised various events relating to three domains (i) transport in non-equilibrium statistical mechanics; (ii) the design of more efficient simulation methods; (iii) life sciences. It brought together physicists, mathematicians from many domains, computer scientists, as well as researchers working at the interface between biology, physics and mathematics. The present volume is indispensable reading for researchers and Ph.D. students working in such areas.
Dynamical evolution over long time scales is a prominent feature of all the systems we intuitively think of as complex — for example, ecosystems, the brain or the economy. In physics, the term ageing is used for this type of slow change, occurring over time scales much longer than the patience, or indeed the lifetime, of the observer. The main focus of this book is on the stochastic processes which cause ageing, and the surprising fact that the ageing dynamics of systems which are very different at the microscopic level can be treated in similar ways.The first part of this book provides the necessary mathematical and computational tools and the second part describes the intuition needed to deal with these systems. Some of the first few chapters have been covered in several other books, but the emphasis and selection of the topics reflect both the authors' interests and the overall theme of the book. The second part contains an introduction to the scientific literature and deals in some detail with the description of complex phenomena of a physical and biological nature, for example, disordered magnetic materials, superconductors and glasses, models of co-evolution in ecosystems and even of ant behaviour. These heterogeneous topics are all dealt with in detail using similar analytical techniques.This book emphasizes the unity of complex dynamics and provides the tools needed to treat a large number of complex systems of current interest. The ideas and the approach to complex dynamics it presents have not appeared in book form until now./a
A beginner’s guide to stochastic growth modeling The chief advantage of stochastic growth models over deterministic models is that they combine both deterministic and stochastic elements of dynamic behaviors, such as weather, natural disasters, market fluctuations, and epidemics. This makes stochastic modeling a powerful tool in the hands of practitioners in fields for which population growth is a critical determinant of outcomes. However, the background requirements for studying SDEs can be daunting for those who lack the rigorous course of study received by math majors. Designed to be accessible to readers who have had only a few courses in calculus and statistics, this book offers a comprehensive review of the mathematical essentials needed to understand and apply stochastic growth models. In addition, the book describes deterministic and stochastic applications of population growth models including logistic, generalized logistic, Gompertz, negative exponential, and linear. Ideal for students and professionals in an array of fields including economics, population studies, environmental sciences, epidemiology, engineering, finance, and the biological sciences, Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling: • Provides precise definitions of many important terms and concepts and provides many solved example problems • Highlights the interpretation of results and does not rely on a theorem-proof approach • Features comprehensive chapters addressing any background deficiencies readers may have and offers a comprehensive review for those who need a mathematics refresher • Emphasizes solution techniques for SDEs and their practical application to the development of stochastic population models An indispensable resource for students and practitioners with limited exposure to mathematics and statistics, Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling is an excellent fit for advanced undergraduates and beginning graduate students, as well as practitioners who need a gentle introduction to SDEs. Michael J. Panik, PhD, is Professor in the Department of Economics, Barney School of Business and Public Administration at the University of Hartford in Connecticut. He received his PhD in Economics from Boston College and is a member of the American Mathematical Society, The American Statistical Association, and The Econometric Society.
This “lucid, masterfully written introduction to an often difficult subject . . . belongs on the bookshelf of every student of statistical physics” (Dr. Brian J. Albright, Applied Physics Division, Los Alamos National Laboratory). This book provides an accessible introduction to stochastic processes in physics and describes the basic mathematical tools of the trade: probability, random walks, and Wiener and Ornstein-Uhlenbeck processes. With an emphasis on applications, it includes end-of-chapter problems. Physicist and author Don S. Lemons builds on Paul Langevin’s seminal 1908 paper “On the Theory of Brownian Motion” and its explanations of classical uncertainty in natural phenomena. Following Langevin’s example, Lemons applies Newton’s second law to a “Brownian particle on which the total force included a random component.” This method builds on Newtonian dynamics and provides an accessible explanation to anyone approaching the subject for the first time. This volume contains the complete text of Paul Langevin’s “On the Theory of Brownian Motion,” translated by Anthony Gythiel.