An Introduction to Optimal Control of FBSDE with Incomplete Information

An Introduction to Optimal Control of FBSDE with Incomplete Information

Author: Guangchen Wang

Publisher: Springer

Published: 2018-05-16

Total Pages: 124

ISBN-13: 3319790390

DOWNLOAD EBOOK

This book focuses on maximum principle and verification theorem for incomplete information forward-backward stochastic differential equations (FBSDEs) and their applications in linear-quadratic optimal controls and mathematical finance. ​Lots of interesting phenomena arising from the area of mathematical finance can be described by FBSDEs. Optimal control problems of FBSDEs are theoretically important and practically relevant. A standard assumption in the literature is that the stochastic noises in the model are completely observed. However, this is rarely the case in real world situations. The optimal control problems under complete information are studied extensively. Nevertheless, very little is known about these problems when the information is not complete. The aim of this book is to fill this gap. This book is written in a style suitable for graduate students and researchers in mathematics and engineering with basic knowledge of stochastic process, optimal control and mathematical finance.


Mathematical Control Theory for Stochastic Partial Differential Equations

Mathematical Control Theory for Stochastic Partial Differential Equations

Author: Qi Lü

Publisher: Springer Nature

Published: 2021-10-19

Total Pages: 592

ISBN-13: 3030823318

DOWNLOAD EBOOK

This is the first book to systematically present control theory for stochastic distributed parameter systems, a comparatively new branch of mathematical control theory. The new phenomena and difficulties arising in the study of controllability and optimal control problems for this type of system are explained in detail. Interestingly enough, one has to develop new mathematical tools to solve some problems in this field, such as the global Carleman estimate for stochastic partial differential equations and the stochastic transposition method for backward stochastic evolution equations. In a certain sense, the stochastic distributed parameter control system is the most general control system in the context of classical physics. Accordingly, studying this field may also yield valuable insights into quantum control systems. A basic grasp of functional analysis, partial differential equations, and control theory for deterministic systems is the only prerequisite for reading this book.


Backward Stochastic Differential Equations

Backward Stochastic Differential Equations

Author: N El Karoui

Publisher: CRC Press

Published: 1997-01-17

Total Pages: 236

ISBN-13: 9780582307339

DOWNLOAD EBOOK

This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.


Uncertain Optimal Control

Uncertain Optimal Control

Author: Yuanguo Zhu

Publisher: Springer

Published: 2018-08-29

Total Pages: 211

ISBN-13: 9811321345

DOWNLOAD EBOOK

This book introduces the theory and applications of uncertain optimal control, and establishes two types of models including expected value uncertain optimal control and optimistic value uncertain optimal control. These models, which have continuous-time forms and discrete-time forms, make use of dynamic programming. The uncertain optimal control theory relates to equations of optimality, uncertain bang-bang optimal control, optimal control with switched uncertain system, and optimal control for uncertain system with time-delay. Uncertain optimal control has applications in portfolio selection, engineering, and games. The book is a useful resource for researchers, engineers, and students in the fields of mathematics, cybernetics, operations research, industrial engineering, artificial intelligence, economics, and management science.


Contemporary Quantitative Finance

Contemporary Quantitative Finance

Author: Carl Chiarella

Publisher: Springer Science & Business Media

Published: 2010-07-01

Total Pages: 421

ISBN-13: 3642034799

DOWNLOAD EBOOK

This volume contains a collection of papers dedicated to Professor Eckhard Platen to celebrate his 60th birthday, which occurred in 2009. The contributions have been written by a number of his colleagues and co-authors. All papers have been - viewed and presented as keynote talks at the international conference “Quantitative Methods in Finance” (QMF) in Sydney in December 2009. The QMF Conference Series was initiated by Eckhard Platen in 1993 when he was at the Australian - tional University (ANU) in Canberra. Since joining UTS in 1997 the conference came to be organised on a much larger scale and has grown to become a signi?cant international event in quantitative ?nance. Professor Platen has held the Chair of Quantitative Finance at the University of Technology, Sydney (UTS) jointly in the Faculties of Business and Science since 1997. Prior to this appointment, he was the Founding Head of the Centre for Fin- cial Mathematics at the Institute of Advanced Studies at ANU, a position to which he was appointed in 1994. Eckhard completed a PhD in Mathematics at the Technical University in Dresden in 1975 and in 1985 obtained his Doctor of Science degree (Habilitation degree in the German system) from the Academy of Sciences in Berlin where he headed the Stochastics group at the Weierstrass Institute.


Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE

Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE

Author: Nizar Touzi

Publisher: Springer Science & Business Media

Published: 2012-09-25

Total Pages: 219

ISBN-13: 1461442869

DOWNLOAD EBOOK

This book collects some recent developments in stochastic control theory with applications to financial mathematics. We first address standard stochastic control problems from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis is put on the regularity issues and, in particular, on the behavior of the value function near the boundary. We then provide a quick review of the main tools from viscosity solutions which allow to overcome all regularity problems. We next address the class of stochastic target problems which extends in a nontrivial way the standard stochastic control problems. Here the theory of viscosity solutions plays a crucial role in the derivation of the dynamic programming equation as the infinitesimal counterpart of the corresponding geometric dynamic programming equation. The various developments of this theory have been stimulated by applications in finance and by relevant connections with geometric flows. Namely, the second order extension was motivated by illiquidity modeling, and the controlled loss version was introduced following the problem of quantile hedging. The third part specializes to an overview of Backward stochastic differential equations, and their extensions to the quadratic case.​


Probabilistic Theory of Mean Field Games with Applications II

Probabilistic Theory of Mean Field Games with Applications II

Author: René Carmona

Publisher: Springer

Published: 2018-03-08

Total Pages: 712

ISBN-13: 3319564366

DOWNLOAD EBOOK

This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume II tackles the analysis of mean field games in which the players are affected by a common source of noise. The first part of the volume introduces and studies the concepts of weak and strong equilibria, and establishes general solvability results. The second part is devoted to the study of the master equation, a partial differential equation satisfied by the value function of the game over the space of probability measures. Existence of viscosity and classical solutions are proven and used to study asymptotics of games with finitely many players. Together, both Volume I and Volume II will greatly benefit mathematical graduate students and researchers interested in mean field games. The authors provide a detailed road map through the book allowing different access points for different readers and building up the level of technical detail. The accessible approach and overview will allow interested researchers in the applied sciences to obtain a clear overview of the state of the art in mean field games.


Probabilistic Theory of Mean Field Games with Applications I

Probabilistic Theory of Mean Field Games with Applications I

Author: René Carmona

Publisher: Springer

Published: 2018-03-01

Total Pages: 728

ISBN-13: 3319589202

DOWNLOAD EBOOK

This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume I of the book is entirely devoted to the theory of mean field games without a common noise. The first half of the volume provides a self-contained introduction to mean field games, starting from concrete illustrations of games with a finite number of players, and ending with ready-for-use solvability results. Readers are provided with the tools necessary for the solution of forward-backward stochastic differential equations of the McKean-Vlasov type at the core of the probabilistic approach. The second half of this volume focuses on the main principles of analysis on the Wasserstein space. It includes Lions' approach to the Wasserstein differential calculus, and the applications of its results to the analysis of stochastic mean field control problems. Together, both Volume I and Volume II will greatly benefit mathematical graduate students and researchers interested in mean field games. The authors provide a detailed road map through the book allowing different access points for different readers and building up the level of technical detail. The accessible approach and overview will allow interested researchers in the applied sciences to obtain a clear overview of the state of the art in mean field games.


Applied Stochastic Control of Jump Diffusions

Applied Stochastic Control of Jump Diffusions

Author: Bernt Øksendal

Publisher: Springer Science & Business Media

Published: 2007-04-26

Total Pages: 263

ISBN-13: 3540698264

DOWNLOAD EBOOK

Here is a rigorous introduction to the most important and useful solution methods of various types of stochastic control problems for jump diffusions and its applications. Discussion includes the dynamic programming method and the maximum principle method, and their relationship. The text emphasises real-world applications, primarily in finance. Results are illustrated by examples, with end-of-chapter exercises including complete solutions. The 2nd edition adds a chapter on optimal control of stochastic partial differential equations driven by Lévy processes, and a new section on optimal stopping with delayed information. Basic knowledge of stochastic analysis, measure theory and partial differential equations is assumed.


Hidden Markov Models

Hidden Markov Models

Author: Robert J Elliott

Publisher: Springer Science & Business Media

Published: 2008-09-27

Total Pages: 374

ISBN-13: 0387848541

DOWNLOAD EBOOK

As more applications are found, interest in Hidden Markov Models continues to grow. Following comments and feedback from colleagues, students and other working with Hidden Markov Models the corrected 3rd printing of this volume contains clarifications, improvements and some new material, including results on smoothing for linear Gaussian dynamics. In Chapter 2 the derivation of the basic filters related to the Markov chain are each presented explicitly, rather than as special cases of one general filter. Furthermore, equations for smoothed estimates are given. The dynamics for the Kalman filter are derived as special cases of the authors’ general results and new expressions for a Kalman smoother are given. The Chapters on the control of Hidden Markov Chains are expanded and clarified. The revised Chapter 4 includes state estimation for discrete time Markov processes and Chapter 12 has a new section on robust control.