An Introduction to Nonlinear Functional Analysis and Elliptic Problems

An Introduction to Nonlinear Functional Analysis and Elliptic Problems

Author: Antonio Ambrosetti

Publisher: Springer Science & Business Media

Published: 2011-07-19

Total Pages: 203

ISBN-13: 0817681140

DOWNLOAD EBOOK

This self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems and displays how various approaches can easily be applied to a range of model cases. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.


An Introduction to Nonlinear Analysis and Fixed Point Theory

An Introduction to Nonlinear Analysis and Fixed Point Theory

Author: Hemant Kumar Pathak

Publisher: Springer

Published: 2018-05-19

Total Pages: 845

ISBN-13: 9811088667

DOWNLOAD EBOOK

This book systematically introduces the theory of nonlinear analysis, providing an overview of topics such as geometry of Banach spaces, differential calculus in Banach spaces, monotone operators, and fixed point theorems. It also discusses degree theory, nonlinear matrix equations, control theory, differential and integral equations, and inclusions. The book presents surjectivity theorems, variational inequalities, stochastic game theory and mathematical biology, along with a large number of applications of these theories in various other disciplines. Nonlinear analysis is characterised by its applications in numerous interdisciplinary fields, ranging from engineering to space science, hydromechanics to astrophysics, chemistry to biology, theoretical mechanics to biomechanics and economics to stochastic game theory. Organised into ten chapters, the book shows the elegance of the subject and its deep-rooted concepts and techniques, which provide the tools for developing more realistic and accurate models for a variety of phenomena encountered in diverse applied fields. It is intended for graduate and undergraduate students of mathematics and engineering who are familiar with discrete mathematical structures, differential and integral equations, operator theory, measure theory, Banach and Hilbert spaces, locally convex topological vector spaces, and linear functional analysis.


Fixed Point Theory

Fixed Point Theory

Author: Andrzej Granas

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 706

ISBN-13: 038721593X

DOWNLOAD EBOOK

The theory of Fixed Points is one of the most powerful tools of modern mathematics. This book contains a clear, detailed and well-organized presentation of the major results, together with an entertaining set of historical notes and an extensive bibliography describing further developments and applications. From the reviews: "I recommend this excellent volume on fixed point theory to anyone interested in this core subject of nonlinear analysis." --MATHEMATICAL REVIEWS


Fixed Point Theory in Ordered Sets and Applications

Fixed Point Theory in Ordered Sets and Applications

Author: Siegfried Carl

Publisher: Springer Science & Business Media

Published: 2010-11-17

Total Pages: 482

ISBN-13: 1441975853

DOWNLOAD EBOOK

This monograph provides a unified and comprehensive treatment of an order-theoretic fixed point theory in partially ordered sets and its various useful interactions with topological structures. The material progresses systematically, by presenting the preliminaries before moving to more advanced topics. In the treatment of the applications a wide range of mathematical theories and methods from nonlinear analysis and integration theory are applied; an outline of which has been given an appendix chapter to make the book self-contained. Graduate students and researchers in nonlinear analysis, pure and applied mathematics, game theory and mathematical economics will find this book useful.


Optima and Equilibria

Optima and Equilibria

Author: Jean-Pierre Aubin

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 442

ISBN-13: 3662035391

DOWNLOAD EBOOK

Progress in the theory of economic equilibria and in game theory has proceeded hand in hand with that of the mathematical tools used in the field, namely nonlinear analysis and, in particular, convex analysis. Jean-Pierre Aubin, one of the leading specialists in nonlinear analysis and its application to economics, has written a rigorous and concise - yet still elementary and self-contained - textbook providing the mathematical tools needed to study optima and equilibria, as solutions to problems, arising in economics, management sciences, operations research, cooperative and non-cooperative games, fuzzy games etc. It begins with the foundations of optimization theory, and mathematical programming, and in particular convex and nonsmooth analysis. Nonlinear analysis is then presented, first game-theoretically, then in the framework of set valued analysis. These results are then applied to the main classes of economic equilibria. The book contains numerous exercises and problems: the latter allow the reader to venture into areas of nonlinear analysis that lie beyond the scope of the book and of most graduate courses.


Nonlinear Functional Analysis

Nonlinear Functional Analysis

Author: Klaus Deimling

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 465

ISBN-13: 3662005476

DOWNLOAD EBOOK

topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in ยง 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical language and way of thinking, one which is no doubt familiar from elementary lectures in analysis that did not worry much about its connections with algebra and topology. Of course we shall use some elementary topological concepts, which may be new, but in fact only a few remarks here and there pertain to algebraic or differential topological concepts and methods.


Handbook of Metric Fixed Point Theory

Handbook of Metric Fixed Point Theory

Author: W.A. Kirk

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 702

ISBN-13: 9401717486

DOWNLOAD EBOOK

Metric fixed point theory encompasses the branch of fixed point theory which metric conditions on the underlying space and/or on the mappings play a fundamental role. In some sense the theory is a far-reaching outgrowth of Banach's contraction mapping principle. A natural extension of the study of contractions is the limiting case when the Lipschitz constant is allowed to equal one. Such mappings are called nonexpansive. Nonexpansive mappings arise in a variety of natural ways, for example in the study of holomorphic mappings and hyperconvex metric spaces. Because most of the spaces studied in analysis share many algebraic and topological properties as well as metric properties, there is no clear line separating metric fixed point theory from the topological or set-theoretic branch of the theory. Also, because of its metric underpinnings, metric fixed point theory has provided the motivation for the study of many geometric properties of Banach spaces. The contents of this Handbook reflect all of these facts. The purpose of the Handbook is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The goal is to provide information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers.


Topics in Metric Fixed Point Theory

Topics in Metric Fixed Point Theory

Author: Kazimierz Goebel

Publisher: Cambridge University Press

Published: 1990

Total Pages: 258

ISBN-13: 9780521382892

DOWNLOAD EBOOK

Metric Fixed Point Theory has proved a flourishing area of research for many mathematicians. This book aims to offer the mathematical community an accessible, self-contained account which can be used as an introduction to the subject and its development. It will be understandable to a wide audience, including non-specialists, and provide a source of examples, references and new approaches for those currently working in the subject.


An Introduction to Metric Spaces and Fixed Point Theory

An Introduction to Metric Spaces and Fixed Point Theory

Author: Mohamed A. Khamsi

Publisher: John Wiley & Sons

Published: 2011-10-14

Total Pages: 318

ISBN-13: 1118031326

DOWNLOAD EBOOK

Diese Einfuhrung in das Gebiet der metrischen Raume richtet sich in erster Linie nicht an Spezialisten, sondern an Anwender der Methode aus den verschiedensten Bereichen der Naturwissenschaften. Besonders ausfuhrlich und anschaulich werden die Grundlagen von metrischen Raumen und Banach-Raumen erklart, Anhange enthalten Informationen zu verschiedenen Schlusselkonzepten der Mengentheorie (Zornsches Lemma, Tychonov-Theorem, transfinite Induktion usw.). Die hinteren Kapitel des Buches beschaftigen sich mit fortgeschritteneren Themen.


Fixed Point Theory, Variational Analysis, and Optimization

Fixed Point Theory, Variational Analysis, and Optimization

Author: Saleh Abdullah R. Al-Mezel

Publisher: CRC Press

Published: 2014-06-03

Total Pages: 368

ISBN-13: 1482222086

DOWNLOAD EBOOK

Fixed Point Theory, Variational Analysis, and Optimization not only covers three vital branches of nonlinear analysis-fixed point theory, variational inequalities, and vector optimization-but also explains the connections between them, enabling the study of a general form of variational inequality problems related to the optimality conditions invol