Microdensitometry is the measurement of optical density in a vanishingly small portion of a specimen. This primer on microdensitometry offers knowledge developed over 40 years. It concentrates on the basic aspects in terms of modern optical theory while providing practical details for users.
Whether obtained by microscopes, space probes, or the human eye, the same basic tools can be applied to acquire, process, and analyze the data contained in images. Ideal for self study, The Image Processing Handbook, Sixth Edition, first published in 1992, raises the bar once again as the gold-standard reference on this subject. Using extensive new illustrations and diagrams, it offers a logically organized exploration of the important relationship between 2D images and the 3D structures they reveal. Provides Hundreds of Visual Examples in FULL COLOR! The author focuses on helping readers visualize and compare processing and measurement operations and how they are typically combined in fields ranging from microscopy and astronomy to real-world scientific, industrial, and forensic applications. Presenting methods in the order in which they would be applied in a typical workflow—from acquisition to interpretation—this book compares a wide range of algorithms used to: Improve the appearance, printing, and transmission of an image Prepare images for measurement of the features and structures they reveal Isolate objects and structures, and measure their size, shape, color, and position Correct defects and deal with limitations in images Enhance visual content and interpretation of details This handbook avoids dense mathematics, instead using new practical examples that better convey essential principles of image processing. This approach is more useful to develop readers’ grasp of how and why to apply processing techniques and ultimately process the mathematical foundations behind them. Much more than just an arbitrary collection of algorithms, this is the rare book that goes beyond mere image improvement, presenting a wide range of powerful example images that illustrate techniques involved in color processing and enhancement. Applying his 50-year experience as a scientist, educator, and industrial consultant, John Russ offers the benefit of his image processing expertise for fields ranging from astronomy and biomedical research to food science and forensics. His valuable insights and guidance continue to make this handbook a must-have reference.
From its initial publication titled Laser Beam Scanning in 1985 to Handbook of Optical and Laser Scanning, now in its second edition, this reference has kept professionals and students at the forefront of optical scanning technology. Carefully and meticulously updated in each iteration, the book continues to be the most comprehensive scanning resource on the market. It examines the breadth and depth of subtopics in the field from a variety of perspectives. The Second Edition covers: Technologies such as piezoelectric devices Applications of laser scanning such as Ladar (laser radar) Underwater scanning and laser scanning in CTP As laser costs come down, and power and availability increase, the potential applications for laser scanning continue to increase. Bringing together the knowledge and experience of 26 authors from England, Japan and the United States, the book provides an excellent resource for understanding the principles of laser scanning. It illustrates the significance of scanning in society today and would help the user get started in developing system concepts using scanning. It can be used as an introduction to the field and as a reference for persons involved in any aspect of optical and laser beam scanning.
The purpose of this book is to provide the most comprehensive, easy-to-use, and informative guide on light microscopy. Light and Video Microscopy will prepare the reader for the accurate interpretation of an image and understanding of the living cell. With the presentation of geometrical optics, it will assist the reader in understanding image formation and light movement within the microscope. It also provides an explanation of the basic modes of light microscopy and the components of modern electronic imaging systems and guides the reader in determining the physicochemical information of living and developing cells, which influence interpretation. * Brings together mathematics, physics, and biology to provide a broad and deep understanding of the light microscope * Clearly develops all ideas from historical and logical foundations * Laboratory exercises included to assist the reader with practical applications * Microscope discussions include: bright field microscope, dark field microscope, oblique illumination, phase-contrast microscope, photomicrography, fluorescence microscope, polarization microscope, interference microscope, differential interference microscope, and modulation contrast microscope
New interest in light microscopy of the last few years has not been backed up by adequate general literature. This book intends to fill the gap between specialized texts on detailed topics and general introductory booklets, mostly dealing with the use of the conventional light microscope only. In this short textbook both new developments in microscopy and basic facts of image formation will be treated, including often neglected topics such as axial resolving power, lens construction, photomicrography and correct use of phase-en interference contrast systems. Theoretical background will be dealt with as far as necessary for a well-considered application of these techniques enabling a deliberate choice for the approach of a certain problem. Over 150 illustrations (photomicrographs and diagrams) complete the information on microscopy of the nineties in the biomedical field, intended for scientists, doctors, technicians and research students. Many drawings have been contributed by the illustrator R. Kreuger; the photographic work has been executed by J. Peeterse. Secretarial assistance in preparing the manuscript was given by Ms T. M. S. Pierik. Dr M. J. Pearson has corrected the English of the final text.
More than one and a half decades have passed since the last book was published describing developments in the analytical chemistry of synthetic colorants. In the intervening period, the scope and technical capabilities of instrumentation for analysing dyes and pigments has significantly expanded. It is now possible to rapidly resolve a number of problems whose solutions were previously either unattainable or very difficult to achieve. For instance, the unambiguous assignment of all the signals in the proton NMR spectrum of a trisazo direct dye, and the confirmation of the molecular weight of involatile, and, in particular, sulphonated dyes, without derivatisation, are now routine analytical techniques in many laboratories today. In addition, it is now possible to record the NMR spectrum of a dye molecule on less than 1 mg of material, and we are no longer limited to solution spectra, since solid samples can now be routinely analysed in NMR experiments. Whilst not attempting to be all encompassing, this volume is intended to bridge the gap between what was covered in the earlier work edited by Professor Venkataraman and the developments which have since ensued in some key areas. It provides important updates in X-ray crystallography, proton NMR, IR spectroscopy and mass spectrometry, and additionally covers topics such as ESR, micro spectrophotometry and emission spectroscopy.
Histology, immunology, histochemistry and microscopy. Since retiring in 1989 as Reader in Anatomy at Sheffield University, he has been an independent research worker in biomedical science. Key Features * Aids insight into microscope operation and imitations * The approach is non-mathematical, yet in-depth * Enables lecture time to be replaced by learning assignments * Includes a help function for all four programs * The programs have been tried and tested by 2nd and 3rd year biomedical undergraduates.