"This introduction to measurement uncertainty is intended for metrology professionals working in calibration laboratories and metrology institutes, as well as students in tertiary-level science and engineering programmes. The subject matter is presented with an emphasis on developing models of the physical measurement process. The level of mathematics and statistics used is basic and is typically covered by high school studies"--Distributor's website.
Measurement shapes scientific theories, characterises improvements in manufacturing processes and promotes efficient commerce. In concert with measurement is uncertainty, and students in science and engineering need to identify and quantify uncertainties in the measurements they make. This book introduces measurement and uncertainty to second and third year students of science and engineering. Its approach relies on the internationally recognised and recommended guidelines for calculating and expressing uncertainty (known by the acronym GUM). The statistics underpinning the methods are considered and worked examples and exercises are spread throughout the text. Detailed case studies based on typical undergraduate experiments are included to reinforce the principles described in the book. This guide is also useful to professionals in industry who are expected to know the contemporary methods in this increasingly important area. Additional online resources are available to support the book at www.cambridge.org/9780521605793.
It is now becoming recognized in the measurement community that it is as important to communicate the uncertainty related to a specific measurement as it is to report the measurement itself. Without knowing the uncertainty, it is impossible for the users of the result to know what confidence can be placed in it; it is also impossible to assess the comparability of different measurements of the same parameter. This volume collects 20 outstanding papers on the topic, mostly published from 1999-2002 in the journal "Accreditation and Quality Assurance." They provide the rationale for why it is important to evaluate and report the uncertainty of a result in a consistent manner. They also describe the concept of uncertainty, the methodology for evaluating uncertainty, and the advantages of using suitable reference materials. Finally, the benefits to both the analytical laboratory and the user of the results are considered.
Results of measurements and conclusions derived from them constitute much of the technical information produced by the National Institute of Standards and Technology (NIST). In July 1992 the Director of NIST appointed an Ad Hoc Committee on Uncertainty Statements and charged it with recommending a policy on this important topic. The Committee concluded that the CIPM approach could be used to provide quantitative expression of measurement that would satisfy NIST¿s customers¿ requirements. NIST initially published a Technical Note on this issue in Jan. 1993. This 1994 edition addresses the most important questions raised by recipients concerning some of the points it addressed and some it did not. Illustrations.
"Measurement Error and Research Design is an ideal text for research methods courses across the social sciences, especially those in which a primer on measurement is needed. For the novice researcher, this book facilitates understanding of the basic principles required to design measures and methods for empirical research. For the experienced researcher, this book provides an in-depth analysis and discussion of the essence of measurement error and the procedures to minimize it. Most important, the book's unique approach bridges measurement and methodology through clear illustrations of the intangibles of scientific research."--BOOK JACKET.
A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science.
“Evaluating Measurement Accuracy, 2nd Edition” is intended for those who are concerned with measurements in any field of science or technology. It reflects the latest developments in metrology and offers new results, but is designed to be accessible to readers at different levels: scientists who advance the field of metrology, engineers and experimental scientists who use measurements as tool in their professions, students and graduate students in natural sciences and engineering, and, in parts describing practical recommendations, technicians performing mass measurements in industry, quality control, and trade. This book presents material from the practical perspective and offers solutions and recommendations for problems that arise in conducting real-life measurements. This new edition adds a method for estimating accuracy of indirect measurements with independent arguments, whose development Dr. Rabinovich was able to complete very recently. This method, which is called the Method of Enumeration, produces estimates that are no longer approximate, similar to the way the method of reduction described in the first edition removed approximation in estimating uncertainty of indirect measurements with dependent arguments. The method of enumeration completes addressing the range of problems whose solutions signify the emergence of the new theory of accuracy of measurements. A new method is added for building a composition of histograms, and this method forms a theoretical basis for the method of enumeration.Additionally, as a companion to this book, a concise practical guide that assembles simple step-by-step procedures for typical tasks the practitioners are likely to encounter in measurement accuracy estimation is available at SpringerLink.
"I suggest that every technical library should own a copy....Serious experimentalists whose interests are broad will surely want to examine the book with the intent of buying it." Applied Mechanics Review Explore the wide range of problems related to estimation of measurement errors--from the fundamentals of the theory to practical recommendations and procedures. Covers classical concepts of metrology, measuring instruments, calibration, and modern probability- based methods. The many suggestions and recommendations provided make this an ideal resource for graduate students, applied physicists, and engineers.
Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.