Free Piston Stirling Engines

Free Piston Stirling Engines

Author: Graham Walker

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 282

ISBN-13: 3642825265

DOWNLOAD EBOOK

DEFINITION AND NOMENCLATURE A Stirling engine is a mechanical device which operates on a closed regenerative thermodynamic cycle with cyclic compression and expansion of the working fluid at different temperature levels. The flow of working fluid is controlled only by the internal volume changes, there are no valves and, overall, there is a net conversion of heat to work or vice-versa. This generalized definition embraces a large family of machines with different functions; characteristics and configurations. It includes both rotary and reciprocating systems utilizing mechanisms of varying complexity. It covers machines capable of operating as a prime mover or power system converting heat supplied at high tempera ture to output work and waste heat at a lower temperature. It also covers work-consuming machines used as refrigerating systems and heat pumps abstracting heat from a low temperature source and delivering this plus the heat equivalent of the work consumed to a higher tem perature. Finally it covers work-consuming devices used as pressure generators compressing a fluid from a low pressure to a higher pres sure. Very similar machines exist which operate on an open regen erative cycle where the flow of working fluid is controlled by valves. For convenience these may be called Ericsson engines but unfortunate ly the distinction is not widely established and regenerative machines of both types are frequently called 'Stirling engines'.


Stirling Engine Design Manual

Stirling Engine Design Manual

Author: William Martini

Publisher: CreateSpace

Published: 2013-01-25

Total Pages: 414

ISBN-13: 9781482063035

DOWNLOAD EBOOK

For Stirling engines to enjoy widespread application and acceptance, not only must the fundamental operation of such engines be widely understood, but the requisite analytic tools for the stimulation, design, evaluation and optimization of Stirling engine hardware must be readily available. The purpose of this design manual is to provide an introduction to Stirling cycle heat engines, to organize and identify the available Stirling engine literature, and to identify, organize, evaluate and, in so far as possible, compare non-proprietary Stirling engine design methodologies. This report was originally prepared for the National Aeronautics and Space Administration and the U. S. Department of Energy.


Thermoacoustics

Thermoacoustics

Author: Gregory W. Swift

Publisher: Springer

Published: 2017-10-05

Total Pages: 340

ISBN-13: 3319669338

DOWNLOAD EBOOK

This updated new edition provides an introduction to the field of thermoacoustics. All of the key aspects of the topic are introduced, with the goal of helping the reader to acquire both an intuitive understanding and the ability to design hardware, build it, and assess its performance. Weaving together intuition, mathematics, and experimental results, this text equips readers with the tools to bridge the fields of thermodynamics and acoustics. At the same time, it remains firmly grounded in experimental results, basing its discussions on the distillation of a body of experiments spanning several decades and countries. The book begins with detailed treatment of the fundamental physical laws that underlie thermoacoustics. It then goes on to discuss key concepts, including simple oscillations, waves, power, and efficiency. The remaining portions of the book delve into more advanced topics and address practical concerns in applications chapters on hardware and measurements. With its careful progression and end-of-chapter exercises, this book will appeal to graduate students in physics and engineering as well as researchers and practitioners in either acoustics or thermodynamics looking to explore the possibilities of thermoacoustics. This revised and expanded second edition has been updated with an eye to modern technology, including computer animations and DeltaEC examples.


Thermodynamics and Energy Conversion

Thermodynamics and Energy Conversion

Author: Henning Struchtrup

Publisher: Springer

Published: 2014-07-02

Total Pages: 596

ISBN-13: 3662437155

DOWNLOAD EBOOK

This textbook gives a thorough treatment of engineering thermodynamics with applications to classical and modern energy conversion devices. Some emphasis lies on the description of irreversible processes, such as friction, heat transfer and mixing and the evaluation of the related work losses. Better use of resources requires high efficiencies therefore the reduction of irreversible losses should be seen as one of the main goals of a thermal engineer. This book provides the necessary tools. Topics include: car and aircraft engines, including Otto, Diesel and Atkinson cycles, by-pass turbofan engines, ramjet and scramjet; steam and gas power plants, including advanced regenerative systems, solar tower and compressed air energy storage; mixing and separation, including reverse osmosis, osmotic power plants and carbon sequestration; phase equilibrium and chemical equilibrium, distillation, chemical reactors, combustion processes and fuel cells; the microscopic definition of entropy. The book includes about 300 end-of-chapter problems for homework assignments and exams. The material presented suffices for two or three full-term courses on thermodynamics and energy conversion.


Thermodynamics and Heat Powered Cycles

Thermodynamics and Heat Powered Cycles

Author: Chih Wu

Publisher: Nova Publishers

Published: 2007

Total Pages: 684

ISBN-13: 9781600210341

DOWNLOAD EBOOK

Due to the rapid advances in computer technology, intelligent computer software and multimedia have become essential parts of engineering education. Software integration with various media such as graphics, sound, video and animation is providing efficient tools for teaching and learning. A modern textbook should contain both the basic theory and principles, along with an updated pedagogy. Often traditional engineering thermodynamics courses are devoted only to analysis, with the expectation that students will be introduced later to relevant design considerations and concepts. Cycle analysis is logically and traditionally the focus of applied thermodynamics. Type and quantity are constrained, however, by the computational efforts required. The ability for students to approach realistic complexity is limited. Even analyses based upon grossly simplified cycle models can be computationally taxing, with limited educational benefits. Computerised look-up tables reduce computational labour somewhat, but modelling cycles with many interactive loops can lie well outside the limits of student and faculty time budgets. The need for more design content in thermodynamics books is well documented by industry and educational oversight bodies such as ABET (Accreditation Board for Engineering and Technology). Today, thermodynamic systems and cycles are fertile ground for engineering design. For example, niches exist for innovative power generation systems due to deregulation, co-generation, unstable fuel costs and concern for global warming. Professor Kenneth Forbus of the computer science and education department at Northwestern University has developed ideal intelligent computer software for thermodynamic students called CyclePad. CyclePad is a cognitive engineering software. It creates a virtual laboratory where students can efficiently learn the concepts of thermodynamics, and allows systems to be analyzed and designed in a simulated, interactive computer aided design environment. The software guides students through a design process and is able to provide explanations for results and to coach students in improving designs. Like a professor or senior engineer, CyclePad knows the laws of thermodynamics and how to apply them. If the user makes an error in design, the program is able to remind the user of essential principles or design steps that may have been overlooked. If more help is needed, the program can provide a documented, case study that recounts how engineers have resolved similar problems in real life situations. CyclePad eliminates the tedium of learning to apply thermodynamics, and relates what the user sees on the computer screen to the design of actual systems. This integrated, engineering textbook is the result of fourteen semesters of CyclePad usage and evaluation of a course designed to exploit the power of the software, and to chart a path that truly integrates the computer with education. The primary aim is to give students a thorough grounding in both the theory and practice of thermodynamics. The coverage is compact without sacrificing necessary theoretical rigor. Emphasis throughout is on the applications of the theory to actual processes and power cycles. This book will help educators in their effort to enhance education through the effective use of intelligent computer software and computer assisted course work.


Vehicle Propulsion Systems

Vehicle Propulsion Systems

Author: Lino Guzzella

Publisher: Springer Science & Business Media

Published: 2007-09-21

Total Pages: 345

ISBN-13: 3540746927

DOWNLOAD EBOOK

The authors of this text have written a comprehensive introduction to the modeling and optimization problems encountered when designing new propulsion systems for passenger cars. It is intended for persons interested in the analysis and optimization of vehicle propulsion systems. Its focus is on the control-oriented mathematical description of the physical processes and on the model-based optimization of the system structure and of the supervisory control algorithms.


Ringbom Stirling Engines

Ringbom Stirling Engines

Author: James R. Senft

Publisher: Oxford University Press, USA

Published: 1993

Total Pages: 212

ISBN-13:

DOWNLOAD EBOOK

The Ringbom engine, an elegant simplification of the Stirling, is increasingly emerging as a viable, multipurpose engine. Despite its technical elegance, high-speed stable operation capabilities, and potential as an environment-friendly energy source, the advantages manifest in Ringbom design have been slowly realized, due in large to part to its often enigmatic operating regime. This book presents for the first time a clear, tractable mathematical model of the dynamic properties of the Ringbom, resulting in a theorem that offers a complete characterization of the stable operating mode of the engine. The author here details the research leading to the development of the Ringbom and illustrates theoretical results, engine characteristics, and design principles using data from actual Ringbom engines. Throughout the book, the author emphasizes an understanding of Ringbom engine properties through closed form mathematical analysis and lucidly details how his mathematical derivations apply to real engines. Extensive descriptions of the engine hardware are included to aid those interested in their construction. Mechanical, electrical, and chemical engineers concerned with power systems, power generation, energy conservation, solar energy, and low-temperature physics will find this monograph a comprehensive and technically rich introduction to Stirling Ringbom engine technology.