This illustrated textbook for biologists provides a refreshingly clear and authoritative introduction to the key ideas of sampling, experimental design, and statistical analysis. The author presents statistical concepts through common sense, non-mathematical explanations and diagrams. These are followed by the relevant formulae and illustrated by w
This richly illustrated book provides an overview of the design and analysis of experiments with a focus on non-clinical experiments in the life sciences, including animal research. It covers the most common aspects of experimental design such as handling multiple treatment factors and improving precision. In addition, it addresses experiments with large numbers of treatment factors and response surface methods for optimizing experimental conditions or biotechnological yields. The book emphasizes the estimation of effect sizes and the principled use of statistical arguments in the broader scientific context. It gradually transitions from classical analysis of variance to modern linear mixed models, and provides detailed information on power analysis and sample size determination, including ‘portable power’ formulas for making quick approximate calculations. In turn, detailed discussions of several real-life examples illustrate the complexities and aberrations that can arise in practice. Chiefly intended for students, teachers and researchers in the fields of experimental biology and biomedicine, the book is largely self-contained and starts with the necessary background on basic statistical concepts. The underlying ideas and necessary mathematics are gradually introduced in increasingly complex variants of a single example. Hasse diagrams serve as a powerful method for visualizing and comparing experimental designs and deriving appropriate models for their analysis. Manual calculations are provided for early examples, allowing the reader to follow the analyses in detail. More complex calculations rely on the statistical software R, but are easily transferable to other software. Though there are few prerequisites for effectively using the book, previous exposure to basic statistical ideas and the software R would be advisable.
Even though an understanding of experimental design and statistics is central to modern biology, undergraduate and graduate students studying biological subjects often lack confidence in their numerical abilities. Allaying the anxieties of students, Introduction to Statistics for Biology, Third Edition provides a painless introduction to the subject while demonstrating the importance of statistics in contemporary biological studies. New to the Third Edition More detailed explanation of the ideas of elementary probability to simplify the rationale behind hypothesis testing, before moving on to simple tests An emphasis on experimental design and data simulation prior to performing an experiment A general template for carrying out statistical tests from hypothesis to interpretation Worked examples and updated Minitab analyses and graphics Downloadable resources contains a free trial version of Minitab Using Minitab throughout to present practical examples, the authors emphasize the interpretation of computer output. With its nontechnical approach and practical advice, this student-friendly introductory text lays the foundation for the advanced study of statistical analysis.
Specifically intended for lab-based biomedical researchers, this practical guide shows how to design experiments that are reproducible, with low bias, high precision, and widely applicable results. With specific examples from research using both cell cultures and model organisms, it explores key ideas in experimental design, assesses common designs, and shows how to plan a successful experiment. It demonstrates how to control biological and technical factors that can introduce bias or add noise, and covers rarely discussed topics such as graphical data exploration, choosing outcome variables, data quality control checks, and data pre-processing. It also shows how to use R for analysis, and is designed for those with no prior experience. An accompanying website (https://stanlazic.github.io/EDLB.html) includes all R code, data sets, and the labstats R package. This is an ideal guide for anyone conducting lab-based biological research, from students to principle investigators working in either academia or industry.
Providing students with clear and practical advice on how best to organise experiments and collect data so as to make the subsequent analysis easier and their conclusions more robust, this text assumes no specialist knowledge.
This open access textbook provides the background needed to correctly use, interpret and understand statistics and statistical data in diverse settings. Part I makes key concepts in statistics readily clear. Parts I and II give an overview of the most common tests (t-test, ANOVA, correlations) and work out their statistical principles. Part III provides insight into meta-statistics (statistics of statistics) and demonstrates why experiments often do not replicate. Finally, the textbook shows how complex statistics can be avoided by using clever experimental design. Both non-scientists and students in Biology, Biomedicine and Engineering will benefit from the book by learning the statistical basis of scientific claims and by discovering ways to evaluate the quality of scientific reports in academic journals and news outlets.
Presents readers with a user-friendly, non-technical introductionto statistics and the principles of plant and crop experimentation.Avoiding mathematical jargon, it explains how to plan and design anexperiment, analyse results, interpret computer output and presentfindings. Using specific crop and plant case studies, this guidepresents: * The reasoning behind each statistical method is explained beforegiving relevant, practical examples * Step-by-step calculations with examples linked to three computerpackages (MINITAB, GENSTAT and SAS) * Exercises at the end of many chapters * Advice on presenting results and report writing Written by experienced lecturers, this text will be invaluable toundergraduate and postgraduate students studying plant sciences,including plant and crop physiology, biotechnology, plant pathologyand agronomy, plus ecology and environmental science students andthose wanting a refresher or reference book in statistics.
Written in simple language with relevant examples, this illustrative introductory book presents best practices in experimental design and simple data analysis. Taking a practical and intuitive approach, it only uses mathematical formulae to formalize the methods where necessary and appropriate. The text features extended discussions of examples that include real data sets arising from research. The authors analyze data in detail to illustrate the use of basic formulae for simple examples while using the GenStat statistical package for more complex examples. Each chapter offers instructions on how to obtain the example analyses in GenStat and R.
The effective design of scientific experiments is critical to success, yet graduate students receive very little formal training in how to do it. Based on a well-received course taught by the author, Experimental Design for Biologistsfills this gap. Experimental Design for Biologistsexplains how to establish the framework for an experimental project, how to set up a system, design experiments within that system, and how to determine and use the correct set of controls. Separate chapters are devoted to negative controls, positive controls, and other categories of controls that are perhaps less recognized, such as “assumption controls†and “experimentalist controls†. Furthermore, there are sections on establishing the experimental system, which include performing critical “system controls†. Should all experimental plans be hypothesis-driven? Is a question/answer approach more appropriate? What was the hypothesis behind the Human Genome Project? What color is the sky? How does one get to Carnegie Hall? The answers to these kinds of questions can be found in Experimental Design for Biologists. Written in an engaging manner, the book provides compelling lessons in framing an experimental question, establishing a validated system to answer the question, and deriving verifiable models from experimental data. Experimental Design for Biologistsis an essential source of theory and practical guidance in designing a research plan.