This unique book combines a text-based presentation of the core concepts of digital signal processing - including discrete signals and systems, sampling, discrete Fourier transforms, system function, frequency response, and filter design techniques - with a bound-in CD-ROM containing a complete implementation of the book running on the Mathcad 7.0 computational engine. The book strikes an effective balance between mathematical foundations of DSP theory and practical DSP engineering applications.
Amazon.com’s Top-Selling DSP Book for Seven Straight Years—Now Fully Updated! Understanding Digital Signal Processing, Third Edition, is quite simply the best resource for engineers and other technical professionals who want to master and apply today’s latest DSP techniques. Richard G. Lyons has updated and expanded his best-selling second edition to reflect the newest technologies, building on the exceptionally readable coverage that made it the favorite of DSP professionals worldwide. He has also added hands-on problems to every chapter, giving students even more of the practical experience they need to succeed. Comprehensive in scope and clear in approach, this book achieves the perfect balance between theory and practice, keeps math at a tolerable level, and makes DSP exceptionally accessible to beginners without ever oversimplifying it. Readers can thoroughly grasp the basics and quickly move on to more sophisticated techniques. This edition adds extensive new coverage of FIR and IIR filter analysis techniques, digital differentiators, integrators, and matched filters. Lyons has significantly updated and expanded his discussions of multirate processing techniques, which are crucial to modern wireless and satellite communications. He also presents nearly twice as many DSP Tricks as in the second edition—including techniques even seasoned DSP professionals may have overlooked. Coverage includes New homework problems that deepen your understanding and help you apply what you’ve learned Practical, day-to-day DSP implementations and problem-solving throughout Useful new guidance on generalized digital networks, including discrete differentiators, integrators, and matched filters Clear descriptions of statistical measures of signals, variance reduction by averaging, and real-world signal-to-noise ratio (SNR) computation A significantly expanded chapter on sample rate conversion (multirate systems) and associated filtering techniques New guidance on implementing fast convolution, IIR filter scaling, and more Enhanced coverage of analyzing digital filter behavior and performance for diverse communications and biomedical applications Discrete sequences/systems, periodic sampling, DFT, FFT, finite/infinite impulse response filters, quadrature (I/Q) processing, discrete Hilbert transforms, binary number formats, and much more
This book provides a comprehensive theory of mono- and multi-fractal traffic, including the basics of long-range dependent time series and 1/f noise, ergodicity and predictability of traffic, traffic modeling and simulation, stationarity tests of traffic, traffic measurement and the anomaly detection of traffic in communications networks. Proving that mono-fractal LRD time series is ergodic, the book exhibits that LRD traffic is stationary. The author shows that the stationarity of multi-fractal traffic relies on observation time scales, and proposes multi-fractional generalized Cauchy processes and modified multi-fractional Gaussian noise. The book also establishes a set of guidelines for determining the record length of traffic in measurement. Moreover, it presents an approach of traffic simulation, as well as the anomaly detection of traffic under distributed-denial-of service attacks. Scholars and graduates studying network traffic in computer science will find the book beneficial.
ICA3PP 2000 was an important conference that brought together researchers and practitioners from academia, industry and governments to advance the knowledge of parallel and distributed computing. The proceedings constitute a well-defined set of innovative research papers in two broad areas of parallel and distributed computing: (1) architectures, algorithms and networks; (2) systems and applications.
Signals and Systems Using MATLAB, Third Edition, features a pedagogically rich and accessible approach to what can commonly be a mathematically dry subject. Historical notes and common mistakes combined with applications in controls, communications and signal processing help students understand and appreciate the usefulness of the techniques described in the text. This new edition features more end-of-chapter problems, new content on two-dimensional signal processing, and discussions on the state-of-the-art in signal processing. - Introduces both continuous and discrete systems early, then studies each (separately) in-depth - Contains an extensive set of worked examples and homework assignments, with applications for controls, communications, and signal processing - Begins with a review on all the background math necessary to study the subject - Includes MATLAB® applications in every chapter
A complete up-to-date reference for advanced analog and digital IIR filter design rooted in elliptic functions. "Revolutionary" in approach, this book opens up completely new vistas in basic analog and digital IIR filter design--regardless of the technology. By introducing exceptionally elegant and creative mathematical stratagems (e.g., accurate replacement of Jacobi elliptic functions by functions comprising polynomials, square roots, and logarithms), optimization routines carried out with symbolic analysis by "Mathematica," and the advance filter design software of MATLAB, it shows readers how to design many types of filters that cannot be designed using conventional techniques. The filter design algorithms can be directly programed in any language or environment such as Visual BASIC, Visual C, Maple, DERIVE, or MathCAD. Signals; Systems; Transforms; Classical Analog Filter Design; Advanced Analog Filter Design Case Studies; Advanced Analog Filter Design Algorithms; Multi-criteria Optimization of Analog Filter Designs; Classical Digital Filter Design; Advanced Digital Filter Design Case Studies; Advanced Digital Filter Design Algorithms; Multi-criteria Optimization of Digital Filter Designs; Elliptic Functions; Elliptic Rational Function.