An Introduction to Celestial Mechanics

An Introduction to Celestial Mechanics

Author: Richard Fitzpatrick

Publisher: Cambridge University Press

Published: 2012-06-28

Total Pages: 277

ISBN-13: 1139510940

DOWNLOAD EBOOK

This accessible text on classical celestial mechanics, the principles governing the motions of bodies in the Solar System, provides a clear and concise treatment of virtually all of the major features of solar system dynamics. Building on advanced topics in classical mechanics such as rigid body rotation, Langrangian mechanics and orbital perturbation theory, this text has been written for advanced undergraduates and beginning graduate students in astronomy, physics, mathematics and related fields. Specific topics covered include Keplerian orbits, the perihelion precession of the planets, tidal interactions between the Earth, Moon and Sun, the Roche radius, the stability of Lagrange points in the three-body problem and lunar motion. More than 100 exercises allow students to gauge their understanding and a solutions manual is available to instructors. Suitable for a first course in celestial mechanics, this text is the ideal bridge to higher level treatments.


Adventures in Celestial Mechanics

Adventures in Celestial Mechanics

Author: Victor G. Szebehely

Publisher: John Wiley & Sons

Published: 2008-07-11

Total Pages: 320

ISBN-13: 3527617795

DOWNLOAD EBOOK

A fascinating introduction to the basic principles of orbital mechanics It has been three hundred years since Isaac Newton first formulated laws to explain the orbits of the Moon and the planets of our solar system. In so doing he laid the groundwork for modern science's understanding of the workings of the cosmos and helped pave the way to the age of space exploration. Adventures in Celestial Mechanics offers students an enjoyable way to become acquainted with the basic principles involved in the motions of natural and human-made bodies in space. Packed with examples in which these principles are applied to everything from a falling stone to the Sun, from space probes to galaxies, this updated and revised Second Edition is an ideal introduction to celestial mechanics for students of astronomy, physics, and aerospace engineering. Other features that helped make the first edition of this book the text of choice in colleges and universities across North America include: * Lively historical accounts of important discoveries in celestial mechanics and the men and women who made them * Superb illustrations, photographs, charts, and tables * Helpful chapter-end examples and problem sets


Introduction to Celestial Mechanics

Introduction to Celestial Mechanics

Author: Jean Kovalevsky

Publisher: Springer

Published: 1967-07-31

Total Pages: 134

ISBN-13: 9789027701268

DOWNLOAD EBOOK

After the launching of the first artificial satellites preceding interplanetary vehicles, celestial mechanics is no longer a science of interest confined to a small group of astronomers and mathematicians; it becomes a special engineering technique. I have tried to set this book in this new perspective, by severely limiting the choice of examples from classical celestial mechanics and by retaining only those useful in calculating the trajectory of a body in space. The main chapter in this book is the fifth, where a detailed solution is given of the problem of motion of an artificial satellite in the Earth's gravitational field, using the methods of Von Zeipel and of Brouwer. It is shown how Lagrange's equations can be applied to this problem. The first four chapters contain proofs of the main results useful for these two methods: the elliptical solution of the two-body problem and the basic algebra of celestial mechanics; some theorems of analytical mechanics; the Delaunay variables and the Lagrangian equations of variation of elements; the expansion of the disturbing function and the Bessel functions necessary for this expansion. The last two chapters are more descriptive in character. In them I have summarized briefly some of the classical theories of celestial mechanics, and have tried to show their distinctive characteristics without going into details.


Celestial Mechanics and Astrodynamics: Theory and Practice

Celestial Mechanics and Astrodynamics: Theory and Practice

Author: Pini Gurfil

Publisher: Springer

Published: 2016-07-28

Total Pages: 553

ISBN-13: 3662503700

DOWNLOAD EBOOK

This volume is designed as an introductory text and reference book for graduate students, researchers and practitioners in the fields of astronomy, astrodynamics, satellite systems, space sciences and astrophysics. The purpose of the book is to emphasize the similarities between celestial mechanics and astrodynamics, and to present recent advances in these two fields so that the reader can understand the inter-relations and mutual influences. The juxtaposition of celestial mechanics and astrodynamics is a unique approach that is expected to be a refreshing attempt to discuss both the mechanics of space flight and the dynamics of celestial objects. “Celestial Mechanics and Astrodynamics: Theory and Practice” also presents the main challenges and future prospects for the two fields in an elaborate, comprehensive and rigorous manner. The book presents homogenous and fluent discussions of the key problems, rendering a portrayal of recent advances in the field together with some basic concepts and essential infrastructure in orbital mechanics. The text contains introductory material followed by a gradual development of ideas interweaved to yield a coherent presentation of advanced topics.


Lectures on Celestial Mechanics

Lectures on Celestial Mechanics

Author: Carl L. Siegel

Publisher: Springer Science & Business Media

Published: 1995-02-15

Total Pages: 312

ISBN-13: 9783540586562

DOWNLOAD EBOOK

The present book represents to a large extent the translation of the German "Vorlesungen über Himmelsmechanik" by C. L. Siegel. The demand for a new edition and for an English translation gave rise to the present volume which, however, goes beyond a mere translation. To take account of recent work in this field a number of sections have been added, especially in the third chapter which deals with the stability theory. Still, it has not been attempted to give a complete presentation of the subject, and the basic prganization of Siegel's original book has not been altered. The emphasis lies in the development of results and analytic methods which are based on the ideas of H. Poincare, G. D. Birkhoff, A. Liapunov and, as far as Chapter I is concerned, on the work of K. F. Sundman and C. L. Siegel. In recent years the measure-theoretical aspects of mechanics have been revitalized and have led to new results which will not be discussed here. In this connection we refer, in particular, to the interesting book by V. I. Arnold and A. Avez on "Problemes Ergodiques de la Mecanique Classique", which stresses the interaction of ergodic theory and mechanics. We list the points in which the present book differs from the German text. In the first chapter two sections on the tri pie collision in the three body problem have been added by C. L. Siegel.


Stability and Chaos in Celestial Mechanics

Stability and Chaos in Celestial Mechanics

Author: Alessandra Celletti

Publisher: Springer Science & Business Media

Published: 2010-03-10

Total Pages: 265

ISBN-13: 3540851461

DOWNLOAD EBOOK

This overview of classical celestial mechanics focuses the interplay with dynamical systems. Paradigmatic models introduce key concepts – order, chaos, invariant curves and cantori – followed by the investigation of dynamical systems with numerical methods.


Relativistic Celestial Mechanics of the Solar System

Relativistic Celestial Mechanics of the Solar System

Author: Sergei Kopeikin

Publisher: John Wiley & Sons

Published: 2011-10-25

Total Pages: 897

ISBN-13: 3527634576

DOWNLOAD EBOOK

This authoritative book presents the theoretical development of gravitational physics as it applies to the dynamics of celestial bodies and the analysis of precise astronomical observations. In so doing, it fills the need for a textbook that teaches modern dynamical astronomy with a strong emphasis on the relativistic aspects of the subject produced by the curved geometry of four-dimensional spacetime. The first three chapters review the fundamental principles of celestial mechanics and of special and general relativity. This background material forms the basis for understanding relativistic reference frames, the celestial mechanics of N-body systems, and high-precision astrometry, navigation, and geodesy, which are then treated in the following five chapters. The final chapter provides an overview of the new field of applied relativity, based on recent recommendations from the International Astronomical Union. The book is suitable for teaching advanced undergraduate honors programs and graduate courses, while equally serving as a reference for professional research scientists working in relativity and dynamical astronomy. The authors bring their extensive theoretical and practical experience to the subject. Sergei Kopeikin is a professor at the University of Missouri, while Michael Efroimsky and George Kaplan work at the United States Naval Observatory, one of the world?s premier institutions for expertise in astrometry, celestial mechanics, and timekeeping.