This book is designed to introduce the reader to the fundamental information necessary for work in the clinical setting, supporting the technology used in patient care. Beginning biomedical equipment technologists can use this book to obtain a working vocabulary and elementary knowledge of the industry. Content is presented through the inclusion of a wide variety of medical instrumentation, with an emphasis on generic devices and classifications; individual manufacturers are explained only when the market is dominated by a particular unit. Designed for the reader with a fundamental understanding of anatomy, physiology, and medical terminology appropriate for their role in the health care field and assumes the reader's understanding of electronic concepts, including voltage, current, resistance, impedance, analog and digital signals, and sensors. The material covered will assist the reader in the development of his or her role as a knowledgeable and effective member of the patient care team.
Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinforce concepts and develop problem-solving skills making this book an invaluable tool for all biomedical students and engineers. New to this edition: Computational Biology, Medical Imaging, Genomics and Bioinformatics.* 60% update from first edition to reflect the developing field of biomedical engineering* New chapters on Computational Biology, Medical Imaging, Genomics, and Bioinformatics* Companion site: http://intro-bme-book.bme.uconn.edu/* MATLAB and SIMULINK software used throughout to model and simulate dynamic systems* Numerous self-study homework problems and thorough cross-referencing for easy use
Primarily intended as a textbook for the undergraduate students of Instrumentation, Electronics, and Electrical Engineering for a course in biomedical instrumentation as part of their programmes. The book presents a detailed introduction to the fundamental principles and applications of biomedical instrumentation. The book familiarizes the students of engineering with the basics of medical science by explaining the relevant medical terminology in simple language. Without presuming prior knowledge of human physiology, it helps the students to develop a substantial understanding of the complex processes of functioning of the human body. The mechanisms of all major biomedical instrumentation systems—ECG, EEG, CT scanner, MRI machine, pacemaker, dialysis machine, ultrasound imaging machine, laser lithotripsy machine, defibrillator, and plethysmograph—are explained comprehensively. A large number of illustrations are provided throughout the book to aid in the development of practical understanding of the subject matter. Chapter-end review questions help in testing the students’ grasp of the underlying concepts. The second edition of the book incorporates detailed explanations to action potential supported with illustrative example and improved figure, ionic action of silver-silver chloride electrode, and isolation amplifiers. It also includes mathematical treatment to ultrasonic transit time flowmeters. A method to find approximate axis of heart and image reconstruction in CT scan is explained with simple examples. A topic on MRI has been simplified for clear understanding and a new section on Positron Emission Tomography (PET), which is an emerging tool for cancer detection, has been introduced.
Modern Practical Healthcare Issues in Biomedical Instrumentation describes the designs, applications and principles of several medical devices used in hospitals and at home. The book presents practical devices that can potentially be used for healthcare purposes. Sections cover the use of biosensors to monitor the physiological properties of the human body, focusing on devices used to evaluate, measure and manipulate the biological system, and highlighting practical devices that can potentially be used for healthcare purposes. It is an excellent resource for undergraduate, graduate and post-graduate students of biomedical engineering. - Focuses on devices used to evaluate, measure and manipulate the biological system - Describes the designs, applications and principles of several medical devices used in hospitals and at home - Discusses various application and how their usage will help to aid health care delivery
This 3rd Edition has been thoroughly revised and updated taking into account technological innovations and introduction of new and improved methods of medical diagnosis and treatment. Capturing recent developments and discussing new topics, the 3rd Edition includes a separate chapter on 'Telemedicine Technology', which shows how information and communication technologies have made significant contribution in better diagnosis and treatment of patients and management of health facilities. Alongside, there is coverage of new implantable devices as increasingly such devices are being preferred for treatment, particularly in neurological stimulation for pain management, epilepsy, bladder control, etc. The 3rd Edition also appropriately addresses 'Point of Care' equipment: as some technologies become easier to use and less expensive and equipment becomes more transportable, even complex technologies can diffuse out of hospitals and institutional settings into outpatient facilities and patient's homes. With expanded coverage, this exhaustive and comprehensive handbook would be useful forbiomedical physicists and engineers, students, doctors, physiotherapists, and manufacturers ofmedical instruments. Salient features: All chapters updated to address the current state of technology Separate chapter on 'Telemedicine Technology' Coverage of new implantable devices Discussion on 'Point of Care' equipment Distinctive visual impact of graphs and photographs of latest commercial equipment Updated list of references includes latest research material in the area Discussion on applications of developments in the following fields in biomedical equipment: micro-electronics micro-electromechanical systems advanced signal processing wireless communication new energy sources for portable and implantable devices Coverage of new topics, including: gamma knife cyber knife multislice CT scanner new sensors digital radiography PET scanner laser lithotripter peritoneal dialysis machine Describing the physiological basis and engineering principles of electro-medical equipment, Handbook of Biomedical Instrumentation also includes information on the principles of operation and the performance parameters of a wide range of instruments. Broadly, this comprehensive handbook covers: recording and monitoring instruments measurement and analysis techniques modern imaging systems therapeutic equipment
One of the most comprehensive books in the field, this import from TATA McGraw-Hill rigorously covers the latest developments in medical imaging systems, gamma camera, PET camera, SPECT camera and lithotripsy technology. Written for working engineers, technicians, and graduate students, the book includes of hundreds of images as well as detailed working instructions for the newest and more popular instruments used by biomedical engineers today.
For freshman and limited calculus-based courses in Introduction to Biomedical Engineering or Introduction to Bioengineering. Substantial yet reader-friendly, this introduction examines the living system from the molecular to the human scale-presenting bioengineering practice via some of the best engineering designs provided by nature, from a variety of perspectives. Domach makes the field more accessible for students, helping them to pick up the jargon and determine where their skill sets may fit in. He covers such key issues as optimization, scaling, and design; and introduces these concepts in a sequential, layered manner. Analysis strategies, science, and technology are illustrated in each chapter.
Since the publication of Carr and Brown's biomedical equipment text more than ten years ago, it has become the industry standard. Now, this completely revised second edition promises to set the pace for modern biomedical equipment technology.