Introduction to Modern Number Theory

Introduction to Modern Number Theory

Author: Yu. I. Manin

Publisher: Springer Science & Business Media

Published: 2006-03-30

Total Pages: 519

ISBN-13: 3540276920

DOWNLOAD EBOOK

This edition has been called ‘startlingly up-to-date’, and in this corrected second printing you can be sure that it’s even more contemporaneous. It surveys from a unified point of view both the modern state and the trends of continuing development in various branches of number theory. Illuminated by elementary problems, the central ideas of modern theories are laid bare. Some topics covered include non-Abelian generalizations of class field theory, recursive computability and Diophantine equations, zeta- and L-functions. This substantially revised and expanded new edition contains several new sections, such as Wiles' proof of Fermat's Last Theorem, and relevant techniques coming from a synthesis of various theories.


The Mathematics of Encryption

The Mathematics of Encryption

Author: Margaret Cozzens

Publisher: American Mathematical Soc.

Published: 2013-09-05

Total Pages: 355

ISBN-13: 0821883216

DOWNLOAD EBOOK

How quickly can you compute the remainder when dividing by 120143? Why would you even want to compute this? And what does this have to do with cryptography? Modern cryptography lies at the intersection of mathematics and computer sciences, involving number theory, algebra, computational complexity, fast algorithms, and even quantum mechanics. Many people think of codes in terms of spies, but in the information age, highly mathematical codes are used every day by almost everyone, whether at the bank ATM, at the grocery checkout, or at the keyboard when you access your email or purchase products online. This book provides a historical and mathematical tour of cryptography, from classical ciphers to quantum cryptography. The authors introduce just enough mathematics to explore modern encryption methods, with nothing more than basic algebra and some elementary number theory being necessary. Complete expositions are given of the classical ciphers and the attacks on them, along with a detailed description of the famous Enigma system. The public-key system RSA is described, including a complete mathematical proof that it works. Numerous related topics are covered, such as efficiencies of algorithms, detecting and correcting errors, primality testing and digital signatures. The topics and exposition are carefully chosen to highlight mathematical thinking and problem solving. Each chapter ends with a collection of problems, ranging from straightforward applications to more challenging problems that introduce advanced topics. Unlike many books in the field, this book is aimed at a general liberal arts student, but without losing mathematical completeness.


Solving Polynomial Equation Systems I

Solving Polynomial Equation Systems I

Author: Teo Mora

Publisher: Cambridge University Press

Published: 2003-03-27

Total Pages: 452

ISBN-13: 9780521811545

DOWNLOAD EBOOK

Computational algebra; computational number theory; commutative algebra; handbook; reference; algorithmic; modern.


Interactive Theorem Proving

Interactive Theorem Proving

Author: Christian Urban

Publisher: Springer

Published: 2015-08-18

Total Pages: 479

ISBN-13: 3319221027

DOWNLOAD EBOOK

This book constitutes the proceedings of the 6th International Conference on Interactive Theorem Proving, ITP 2015, held in Nanjing, China, in August 2015. The 27 papers presented in this volume were carefully reviewed and selected from 54 submissions. The topics range from theoretical foundations to implementation aspects and applications in program verification, security and formalization of mathematics.


Cryptography

Cryptography

Author: Douglas R. Stinson

Publisher: CRC Press

Published: 2005-11-01

Total Pages: 601

ISBN-13: 1420057138

DOWNLOAD EBOOK

THE LEGACY... First introduced in 1995, Cryptography: Theory and Practice garnered enormous praise and popularity, and soon became the standard textbook for cryptography courses around the world. The second edition was equally embraced, and enjoys status as a perennial bestseller. Now in its third edition, this authoritative text continues to provide a solid foundation for future breakthroughs in cryptography. WHY A THIRD EDITION? The art and science of cryptography has been evolving for thousands of years. Now, with unprecedented amounts of information circling the globe, we must be prepared to face new threats and employ new encryption schemes on an ongoing basis. This edition updates relevant chapters with the latest advances and includes seven additional chapters covering: Pseudorandom bit generation in cryptography Entity authentication, including schemes built from primitives and special purpose "zero-knowledge" schemes Key establishment including key distribution and protocols for key agreement, both with a greater emphasis on security models and proofs Public key infrastructure, including identity-based cryptography Secret sharing schemes Multicast security, including broadcast encryption and copyright protection THE RESULT... Providing mathematical background in a "just-in-time" fashion, informal descriptions of cryptosystems along with more precise pseudocode, and a host of numerical examples and exercises, Cryptography: Theory and Practice, Third Edition offers comprehensive, in-depth treatment of the methods and protocols that are vital to safeguarding the mind-boggling amount of information circulating around the world.


Cryptography

Cryptography

Author: Douglas Robert Stinson

Publisher: CRC Press

Published: 2018-08-14

Total Pages: 480

ISBN-13: 131528247X

DOWNLOAD EBOOK

Through three editions, Cryptography: Theory and Practice, has been embraced by instructors and students alike. It offers a comprehensive primer for the subject’s fundamentals while presenting the most current advances in cryptography. The authors offer comprehensive, in-depth treatment of the methods and protocols that are vital to safeguarding the seemingly infinite and increasing amount of information circulating around the world. Key Features of the Fourth Edition: New chapter on the exciting, emerging new area of post-quantum cryptography (Chapter 9). New high-level, nontechnical overview of the goals and tools of cryptography (Chapter 1). New mathematical appendix that summarizes definitions and main results on number theory and algebra (Appendix A). An expanded treatment of stream ciphers, including common design techniques along with coverage of Trivium. Interesting attacks on cryptosystems, including: padding oracle attack correlation attacks and algebraic attacks on stream ciphers attack on the DUAL-EC random bit generator that makes use of a trapdoor. A treatment of the sponge construction for hash functions and its use in the new SHA-3 hash standard. Methods of key distribution in sensor networks. The basics of visual cryptography, allowing a secure method to split a secret visual message into pieces (shares) that can later be combined to reconstruct the secret. The fundamental techniques cryptocurrencies, as used in Bitcoin and blockchain. The basics of the new methods employed in messaging protocols such as Signal, including deniability and Diffie-Hellman key ratcheting.


Finite Fields, with Applications to Combinatorics

Finite Fields, with Applications to Combinatorics

Author: Kannan Soundararajan

Publisher: American Mathematical Society

Published: 2022-11-09

Total Pages: 100

ISBN-13: 1470469308

DOWNLOAD EBOOK

This book uses finite field theory as a hook to introduce the reader to a range of ideas from algebra and number theory. It constructs all finite fields from scratch and shows that they are unique up to isomorphism. As a payoff, several combinatorial applications of finite fields are given: Sidon sets and perfect difference sets, de Bruijn sequences and a magic trick of Persi Diaconis, and the polynomial time algorithm for primality testing due to Agrawal, Kayal and Saxena. The book forms the basis for a one term intensive course with students meeting weekly for multiple lectures and a discussion session. Readers can expect to develop familiarity with ideas in algebra (groups, rings and fields), and elementary number theory, which would help with later classes where these are developed in greater detail. And they will enjoy seeing the AKS primality test application tying together the many disparate topics from the book. The pre-requisites for reading this book are minimal: familiarity with proof writing, some linear algebra, and one variable calculus is assumed. This book is aimed at incoming undergraduate students with a strong interest in mathematics or computer science.


The Art of Computer Programming

The Art of Computer Programming

Author: Donald E. Knuth

Publisher: Addison-Wesley Professional

Published: 2014-05-06

Total Pages: 1092

ISBN-13: 0321635760

DOWNLOAD EBOOK

The bible of all fundamental algorithms and the work that taught many of today's software developers most of what they know about computer programming. –Byte, September 1995 I can't begin to tell you how many pleasurable hours of study and recreation they have afforded me! I have pored over them in cars, restaurants, at work, at home... and even at a Little League game when my son wasn't in the line-up. –Charles Long If you think you're a really good programmer... read [Knuth's] Art of Computer Programming... You should definitely send me a resume if you can read the whole thing. –Bill Gates It's always a pleasure when a problem is hard enough that you have to get the Knuths off the shelf. I find that merely opening one has a very useful terrorizing effect on computers. –Jonathan Laventhol The second volume offers a complete introduction to the field of seminumerical algorithms, with separate chapters on random numbers and arithmetic. The book summarizes the major paradigms and basic theory of such algorithms, thereby providing a comprehensive interface between computer programming and numerical analysis. Particularly noteworthy in this third edition is Knuth's new treatment of random number generators, and his discussion of calculations with formal power series. Ebook (PDF version) produced by Mathematical Sciences Publishers (MSP),http://msp.org


Computational Complexity

Computational Complexity

Author: Sanjeev Arora

Publisher: Cambridge University Press

Published: 2009-04-20

Total Pages: 609

ISBN-13: 0521424267

DOWNLOAD EBOOK

New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.


The Riemann Hypothesis

The Riemann Hypothesis

Author: Peter Borwein

Publisher: Springer Science & Business Media

Published: 2007-11-21

Total Pages: 541

ISBN-13: 0387721266

DOWNLOAD EBOOK

This book presents the Riemann Hypothesis, connected problems, and a taste of the body of theory developed towards its solution. It is targeted at the educated non-expert. Almost all the material is accessible to any senior mathematics student, and much is accessible to anyone with some university mathematics. The appendices include a selection of original papers that encompass the most important milestones in the evolution of theory connected to the Riemann Hypothesis. The appendices also include some authoritative expository papers. These are the “expert witnesses” whose insight into this field is both invaluable and irreplaceable.